AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Ru-doped functional porous materials for electrocatalytic water splitting

Chongao Tian1Rui Liu1Yu Zhang2Wenxiu Yang1( )Bo Wang1( )
Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Institute of Technology Library, Beijing Institute of Technology, Beijing 100081, China
Show Author Information

Graphical Abstract

In this review, the design and preparation of Ru-doped functional porous materials toward electrolytic water splitting (EWS) in recent years are summarized including Ru-doped metal-organic frameworks (MOFs), Ru-doped porous organic polymers (POPs) and their derivatives. Meanwhile, the details about synthetic methods and structure-activity relationships are also depicted in this review.

Abstract

Electrolytic water splitting (EWS) is an attractive and promising technique for the production of hydrogen energy. Nevertheless, the sluggish kinetic rate of hydrogen/oxygen evolution reactions leads to a high overpotential and low energy efficiency. Up to date, Pt/Ir-based nanocatalysts have become the state-of-the-art EWS catalysts, but disadvantages such as high cost and low earth abundance greatly limit their applications in EWS devices. As an attractive candidate for the Pt/Ir catalysts, series of Ru-based nanomaterials have aroused much attention for their low price, Pt-like hydrogen bond strength, and high EWS activity. In particular, Ru-doped functional porous materials have been becoming one of the most representative EWS catalysts, which can not only achieve the dispersion and adjustment for active Ru sites, but also simultaneously solve the problems of mass transfer and catalytic conversion in EWS. In this review, the design and preparation strategies of Ru-doped functional porous materials toward EWS in recent years are summarized, including Ru-doped metal organic frameworks (MOFs), Ru-doped porous organic polymers (POPs), and their derivatives. Meanwhile, detailed structure–activity relationships induced by the tuned geometric/electronic structures of Ru-doped functional porous materials are further depicted in this review. Last but not least, the challenges and perspectives of Ru-doped functional porous materials catalysts are reasonably proposed to provide fresh ideas for the design of Ru-based EWS catalysts.

References

[1]

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

[2]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[3]

Zhang, C. H.; Guo, Z. W.; Tian, Y.; Yu, C. M.; Liu, K. S.; Jiang, L. Engineering electrode wettability to enhance mass transfer in hydrogen evolution reaction. Nano Res. Energy 2023, 2, e9120063.

[4]

Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.

[5]

Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.

[6]

Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

[7]

Zeng, L. Y.; Zhao, Z. L.; Lv, F.; Xia, Z. H.; Lu, S. Y.; Li, J.; Sun, K. A.; Wang, K.; Sun, Y. J.; Huang, Q. Z. et al. Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat. Commun. 2022, 13, 3822.

[8]

Wang, J.; Ji, Y. J.; Yin, R. G.; Li, Y. Y.; Shao, Q.; Huang, X. Q. Transition metal-doped ultrathin RuO2 networked nanowires for efficient overall water splitting across a broad pH range. J. Mater. Chem. A 2019, 7, 6411–6416.

[9]

Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Dai, J.; Chen, Y. B.; Sun, H. N.; Zhou, W.; Liu, M. L.; Smith, S. C.; Wang, H. T. et al. Unusual synergistic effect in layered ruddlesden-popper oxide enables ultrafast hydrogen evolution. Nat. Commun. 2019, 10, 149.

[10]

Wu, Z. Y.; Chen, F. Y.; Li, B. Y.; Yu, S. W.; Finfrock, Y. Z.; Meira, D. M.; Yan, Q. Q.; Zhu, P.; Chen, M. X.; Song, T. W. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 2022, 22, 100–108.

[11]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 2021, 33, 2004243.

[12]

Rong, C. L.; Shen, X. J.; Wang, Y.; Thomsen, L.; Zhao, T. W.; Li, Y. B.; Lu, X. Y.; Amal, R.; Zhao, C. Electronic structure engineering of single-atom Ru sites via Co-N4 sites for bifunctional pH-universal water splitting. Adv. Mater. 2022, 34, 2110103.

[13]

Wang, Y.; Pan, Y.; Zhu, L. K.; Yu, H. H.; Duan, B. Y.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER. Carbon 2019, 146, 671–679.

[14]

Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.

[15]

Bao, F. X.; Yang, Z. L.; Yuan, Y. L.; Yu, P. L.; Zeng, G. M.; Cheng, Y.; Lu, Y. F.; Zhang, J. W.; Huang, H. W. Synergistic cascade hydrogen evolution boosting via integrating surface oxophilicity modification with carbon layer confinement. Adv. Funct. Mater. 2022, 32, 2108991.

[16]

Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

[17]

Liu, J. L.; Zheng, Y.; Zhu, D. D.; Vasileff, A.; Ling, T.; Qiao, S. Z. Identification of pH-dependent synergy on Ru/MoS2 interface: A comparison of alkaline and acidic hydrogen evolution. Nanoscale 2017, 9, 16616–16621.

[18]

Luo, T. M.; Huang, J. F.; Hu, Y. Z.; Yuan, C. K.; Chen, J. S.; Cao, L. Y.; Kajiyoshi, K.; Liu, Y. J.; Zhao, Y.; Li, Z. J. et al. Fullerene lattice-confined Ru nanoparticles and single atoms synergistically boost electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 2023, 33, 2213058.

[19]

Ma, X. F.; Xiao, H.; Gao, Y.; Zhao, M.; Zhang, L.; Zhang, J. M.; Jia, J. F.; Wu, H. S. Enhancement of pore confinement caused by the mosaic structure on Ru nanoparticles for pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2023, 11, 3524–3534.

[20]

Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

[21]

Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

[22]

Wu, Y. L.; Li, X. F.; Wei, Y. S.; Fu, Z. M.; Wei, W. B.; Wu, X. T.; Zhu, Q. L.; Xu, Q. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv. Mater. 2021, 33, 2006965.

[23]

Yang, W. X.; Zhang, W. Y.; Liu, R.; Lv, F.; Chao, Y. G.; Wang, Z. C.; Guo, S. J. Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. Chin. J. Catal. 2022, 43, 110–115.

[24]

Du, J.; Li, F.; Sun, L. C. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 2663–2695.

[25]

Li, C.; Zhang, H.; Liu, M.; Lang, F. F.; Pang, J. D.; Bu, X. H. Recent progress in metal-organic frameworks (MOFs) for electrocatalysis. Ind. Chem. Mater. 2023, 1, 9–38.

[26]

Li, Y.; Karimi, M.; Gong, Y. N.; Dai, N.; Safarifard, V.; Jiang, H. L. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter 2021, 4, 2230–2265.

[27]

Wang, X. L.; Dong, L. Z.; Qiao, M.; Tang, Y. J.; Liu, J.; Li, Y. F.; Li, S. L.; Su, J. X.; Lan, Y. Q. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew. Chem., Int. Ed. 2018, 57, 9660–9664.

[28]

Yang, D. H.; Tao, Y.; Ding, X. S.; Han, B. H. Porous organic polymers for electrocatalysis. Chem. Soc. Rev. 2022, 51, 761–791.

[29]

Yu, J. H.; Corma, A.; Li, Y. Functional porous materials chemistry. Adv. Mater. 2020, 32, 2006277.

[30]

Bae, S. Y.; Mahmood, J.; Jeon, I. Y.; Baek, J. B. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 2020, 5, 43–56.

[31]

Han, S. M.; Yun, Q. B.; Tu, S. Y.; Zhu, L. J.; Cao, W. B.; Lu, Q. P. Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution. J. Mater. Chem. A 2019, 7, 24691–24714.

[32]

Yang, Y. J.; Yu, Y. H.; Li, J.; Chen, Q. R.; Du, Y. L.; Rao, P.; Li, R. S.; Jia, C. M.; Kang, Z. Y.; Deng, P. L. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.

[33]

Yu, J.; He, Q. J.; Yang, G. M.; Zhou, W.; Shao, Z. P.; Ni, M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019, 9, 9973–10011.

[34]

Zhu, J. T.; Cai, L. J.; Tu, Y. D.; Zhang, L. F.; Zhang, W. J. Emerging ruthenium single-atom catalysts for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2022, 10, 15370–15389.

[35]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, e1230444.

[36]

Yaghi, O. M.; Li, G. M.; Li, H. L. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703–706.

[37]

Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

[38]

Li, C. F.; Shuai, T. Y.; Zheng, L. R.; Tang, H. B.; Zhao, J. W.; Li, G. R. The key role of carboxylate ligands in Ru@Ni-MOFs/NF in promoting water dissociation kinetics for effective hydrogen evolution in alkaline media. Chem. Eng. J. 2023, 451, 138618.

[39]

Wang, Y.; Wang, C.; Shang, H. Y.; Yuan, M. Y.; Wu, Z. Y.; Li, J.; Du, Y. K. Self-driven Ru-modified NiFe MOF nanosheet as multifunctional electrocatalyst for boosting water and urea electrolysis. J. Colloid Interface Sci. 2022, 605, 779–789.

[40]

Ding, Z. Q.; Wang, K.; Mai, Z. Q.; He, G. Q.; Liu, Z.; Tang, Z. H. RhRu alloyed nanoparticles confined within metal organic frameworks for electrochemical hydrogen evolution at all pH values. Int. J. Hydrog. Energy 2019, 44, 24680–24689.

[41]

Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.

[42]

Li, Y. W.; Wu, Y. H.; Li, T. T.; Lu, M. T.; Chen, Y.; Cui, Y. J.; Gao, J. K.; Qian, G. D. Tuning the electronic structure of a metal-organic framework for an efficient oxygen evolution reaction by introducing minor atomically dispersed ruthenium. Carbon Energy 2023, 5, e265.

[43]

Xu, Y.; Yu, S. S.; Ren, T. L.; Liu, S. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Hydrophilic/aerophobic hydrogen-evolving electrode: NiRu-based metal-organic framework nanosheets in situ grown on conductive substrates. ACS Appl. Mater. Interfaces 2020, 12, 34728–34735.

[44]

Zhao, M.; Li, H. L.; Li, W.; Li, J. Y.; Yi, L. Y.; Hu, W. H.; Li, C. M. Ru-doping enhanced electrocatalysis of metal-organic framework nanosheets toward overall water splitting. Chem.—Eur. J. 2020, 26, 17091–17096.

[45]

Lin, Y.; Zhao, L. X.; Wang, L. M.; Gong, Y. Q. Ruthenium-doped NiFe-based metal-organic framework nanoparticles as highly efficient catalysts for the oxygen evolution reaction. Dalton Trans. 2021, 50, 4280–4287.

[46]

Liao, P. Q.; Shen, J. Q.; Zhang, J. P. Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 2018, 373, 22–48.

[47]

Xu, Y. X.; Li, Q.; Xue, H. G.; Pang, H. Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318.

[48]

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

[49]

Tian, L.; Li, Z.; Xu, X. N.; Zhang, C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470.

[50]

Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 2018, 30, 1707189.

[51]

Zhao, M.; Chen, Z. T.; Lyu, Z. H.; Hood, Z. D.; Xie, M. H.; Vara, M.; Chi, M. F.; Xia, Y. N. Ru octahedral nanocrystals with a face-centered cubic structure, {111} facets, thermal stability up to 400 °C, and enhanced catalytic activity. J. Am. Chem. Soc. 2019, 141, 7028–7036.

[52]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

[53]

Liu, H. Y.; Chen, L. Y.; Hou, C. C.; Wei, Y. S.; Xu, Q. Soluble porous carbon cage-encapsulated highly active metal nanoparticle catalysts. J. Mater. Chem. A 2021, 9, 13670–13677.

[54]

Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.

[55]

Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

[56]

Ge, S. M.; Zhang, L. W.; Hou, J. R.; Liu, S.; Qin, Y. J.; Liu, Q.; Cai, X. B.; Sun, Z. Y.; Yang, M. S.; Luo, J. et al. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487–9494.

[57]

Yang, W. X.; Wang, Z. C.; Zhang, W. Y.; Guo, S. J. Electronic-structure tuning of water-splitting nanocatalysts. Trends Chem. 2019, 1, 259–271.

[58]

Zhang, Q.; Lian, K.; Liu, Q.; Qi, G. C.; Zhang, S. S.; Luo, J.; Liu, X. J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J. Colloid Interface Sci. 2023, 646, 844–854.

[59]

Zhang, Q.; Lian, K.; Qi, G. C.; Zhang, S. S.; Liu, Q.; Luo, Y.; Luo, J.; Liu, X. J. High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges. Sci. China Mater. 2023, 66, 1681–1701.

[60]

Li, K.; Li, Y.; Wang, Y. M.; Ge, J. J.; Liu, C. P.; Xing, W. Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon. Energy Environ. Sci. 2018, 11, 1232–1239.

[61]

Pedersen, A. F.; Ulrikkeholm, E. T.; Escudero-Escribano, M.; Johansson, T. P.; Malacrida, P.; Pedersen, C. M.; Hansen, M. H.; Jensen, K. D.; Rossmeisl, J.; Friebel, D. et al. Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths. Nano Energy 2016, 29, 249–260.

[62]

Cullen, D. A.; More, K. L.; Atanasoska, L. L.; Atanasoski, R. T. Impact of IrRu oxygen evolution reaction catalysts on Pt nanostructured thin films under start-up/shutdown cycling. J. Power Sources 2014, 269, 671–681.

[63]

Liu, S. L.; Zhang, Q. H.; Bao, J. C.; Li, Y. F.; Dai, Z. H.; Gu, L. Significantly enhanced hydrogen evolution activity of freestanding Pd-Ru distorted icosahedral clusters with less than 600 atoms. Chem.—Eur. J. 2017, 23, 18203–18207.

[64]

Wang, S.; Li, Z. R.; Shen, T.; Wang, D. L. N-doped carbon shells encapsulated Ru-Ni nanoalloys for efficient hydrogen evolution reaction. ChemSusChem 2023, 16, e202202128.

[65]

Yu, J.; Dai, Y. W.; Wu, X. H.; Zhang, Z. B.; He, Q. J.; Cheng, C.; Wu, Z.; Shao, Z. P.; Ni, M. Ultrafine ruthenium-iridium alloy nanoparticles well-dispersed on N-rich carbon frameworks as efficient hydrogen-generation electrocatalysts. Chem. Eng. J. 2021, 417, 128105.

[66]

Zhang, C. H.; Sha, J. W.; Fei, H. L.; Liu, M. J.; Yazdi, S.; Zhang, J. B.; Zhong, Q. F.; Zou, X. L.; Zhao, N. Q.; Yu, H. S. et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 2017, 11, 6930–6941.

[67]

Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009.

[68]

Zhou, L.; Lu, S. Y.; Guo, S. J. Recent progress on precious metal single atom materials for water splitting catalysis. SusMat 2021, 1, 194–210.

[69]

Zhu, J. T.; Tu, Y. D.; Cai, L. J.; Ma, H. B.; Chai, Y.; Zhang, L. F.; Zhang, W. J. Defect-assisted anchoring of Pt single atoms on MoS2 nanosheets produces high-performance catalyst for industrial hydrogen evolution reaction. Small 2022, 18, 2104824.

[70]

Liu, T.; Li, P.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W.; Yin, Y. D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 4679–4684.

[71]

Qiu, T. J.; Liang, Z. B.; Guo, W. H.; Gao, S.; Qu, C.; Tabassum, H.; Zhang, H.; Zhu, B. J.; Zou, R. Q.; Shao-Horn, Y. Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy 2019, 58, 1–10.

[72]

Hong, C. B.; Li, X. F.; Wei, W. B.; Wu, X. T.; Zhu, Q. L. Nano-engineering of Ru-based hierarchical porous nanoreactors for highly efficient pH-universal overall water splitting. Appl. Catal. B: Environ. 2021, 294, 120230.

[73]

Yang, K.; Xu, P. P.; Lin, Z. Y.; Yang, Y.; Jiang, P.; Wang, C. L.; Liu, S.; Gong, S. P.; Hu, L.; Chen, Q. W. Ultrasmall Ru/Cu-doped RuO2 complex embedded in amorphous carbon skeleton as highly active bifunctional electrocatalysts for overall water splitting. Small 2018, 14, 1803009.

[74]

Fan, Z. H.; Jiang, J.; Ai, L. H.; Shao, Z. P.; Liu, S. M. Rational design of ruthenium and cobalt-based composites with rich metal-insulator interfaces for efficient and stable overall water splitting in acidic electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 47894–47903.

[75]

Xu, C.; Yang, X. D.; Wen, X.; Wang, Y. Y.; Sun, Y. Q.; Xu, B.; Li, C. C. Nitrogen-doped carbon encapsulating a RuCo heterostructure for enhanced electrocatalytic overall water splitting. CrystEngComm 2022, 24, 4208–4214.

[76]

Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.

[77]

Cheng, G. J.; Wu, G. Y.; Li, H.; Liu, S. C.; Liu, Y. Bimetallic oxygen electrocatalyst derived from metallocenes doped MOFs. Nanotechnology 2021, 32, 225603.

[78]

Sarkar, B.; Das, D.; Nanda, K. K. Construction of noble-metal alloys of cobalt confined N-doped carbon polyhedra toward efficient water splitting. Green Chem. 2020, 22, 7884–7895.

[79]

Li, G. N.; Zheng, K. T.; Li, W. S.; He, Y. C.; Xu, C. J. Ultralow Ru-induced bimetal electrocatalysts with a Ru-enriched and mixed-valence surface anchored on a hollow carbon matrix for oxygen reduction and water splitting. ACS Appl. Mater. Interfaces 2020, 12, 51437–51447.

[80]

Xu, Y.; Yin, S. L.; Li, C. J.; Deng, K.; Xue, H. R.; Li, X. N.; Wang, H. J.; Wang, L. Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 1376–1381.

[81]

Wu, W.; Wu, Y.; Zheng, D.; Wang, K.; Tang, Z. H. Ni@Ru core-shell nanoparticles on flower-like carbon nanosheets for hydrogen evolution reaction at all-pH values, oxygen evolution reaction and overall water splitting in alkaline solution. Electrochim. Acta 2019, 320, 134568.

[82]

Zhang, Z.; Li, P.; Wang, Q.; Feng, Q.; Tao, Y. K.; Xu, J. Y.; Jiang, C.; Lu, X. E.; Fan, J. T.; Gu, M. et al. Mo modulation effect on the hydrogen binding energy of hexagonal-close-packed Ru for hydrogen evolution. J. Mater. Chem. A 2019, 7, 2780–2786.

[83]

Yang, M. Y.; Jiao, L.; Dong, H. L.; Zhou, L. J.; Teng, C. Q.; Yan, D. M.; Ye, T. N.; Chen, X. X.; Liu, Y.; Jiang, H. L. Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Sci. Bull. 2021, 66, 257–264.

[84]

Chen, J. S.; Huang, J. F.; Wang, R.; Feng, W. H.; Wang, H.; Luo, T. M.; Hu, Y. Z.; Yuan, C. K.; Feng, L. L.; Cao, L. Y. et al. Atomic ruthenium coordinated with chlorine and nitrogen as efficient and multifunctional electrocatalyst for overall water splitting and rechargeable zinc-air battery. Chem. Eng. J. 2022, 441, 136078.

[85]

Yan, B. L.; Liu, D. P.; Feng, X. L.; Shao, M. Z.; Zhang, Y. Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Adv. Funct. Mater. 2020, 30, 2003007.

[86]

Li, D.; Shi, X. L.; Sun, S. C.; Zheng, X. Y.; Tian, D.; Jiang, D. L. Metal-organic framework-derived three-dimensional macropore nitrogen-doped carbon frameworks decorated with ultrafine Ru-based nanoparticles for overall water splitting. Inorg. Chem. 2022, 61, 9685–9692.

[87]

Qiu, L. S.; Zheng, G. K.; He, Y.; Lei, L. C.; Zhang, X. W. Ultra-small Sn-RuO2 nanoparticles supported on N-doped carbon polyhedra for highly active and durable oxygen evolution reaction in acidic media. Chem. Eng. J. 2021, 409, 128155.

[88]

Jiang, P.; Yang, Y.; Shi, R. H.; Xia, G. L.; Chen, J. T.; Su, J. W.; Chen, Q. W. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 5475–5485.

[89]

Rezaee, S.; Shahrokhian, S. Ruthenium/ruthenium oxide hybrid nanoparticles anchored on hollow spherical copper-cobalt nitride/nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation. J. Colloid Interface Sci. 2022, 626, 1070–1084.

[90]

Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

[91]

Bai, X.; Wang, L. M.; Nan, B.; Tang, T. M.; Niu, X. D.; Guan, J. Q. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Res. 2022, 15, 6019–6025.

[92]

Tang, T. M.; Duan, Z. Y.; Baimanov, D.; Bai, X.; Liu, X. Y.; Wang, L. M.; Wang, Z. L.; Guan, J. Q. Synergy between isolated Fe and Co sites accelerates oxygen evolution. Nano Res. 2023, 16, 2218–2223.

[93]

Zhu, S. Y.; Ge, J. J.; Liu, C. P.; Xing, W. Atomic-level dispersed catalysts for PEMFCs: Progress and future prospects. EnergyChem 2019, 1, 100018.

[94]

Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

[95]

Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.

[96]

Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.

[97]

Zhang, H.; Wu, B.; Su, J. W.; Zhao, K. Y.; Chen, L. MOF-derived zinc-doped ruthenium oxide hollow nanorods as highly active and stable electrocatalysts for oxygen evolution in acidic media. ChemNanoMat 2021, 7, 117–121.

[98]

Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

[99]

Wang, C.; Shang, H. Y.; Li, J.; Wang, Y.; Xu, H.; Wang, C. Y.; Guo, J.; Du, Y. Y. Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis. Chem. Eng. J. 2021, 420, 129805.

[100]

Wang, C.; Qi, L. M. Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 17219–17224.

[101]

Lin, Y.; Zhang, M. L.; Zhao, L. X.; Wang, L. M.; Cao, D. L.; Gong, Y. Q. Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting. Appl. Surf. Sci. 2021, 536, 147952.

[102]

Shen, Q. H.; Du, C. C.; Chen, Q. Q.; Tang, J.; Wang, B.; Zhang, X. H.; Chen, J. H. In-situ formed Cu-doped RuS2 hollow polyhedrons integrated with simultaneously heterostructure engineering with metallic Ru for boosting hydrogen evolution in alkaline media. Mater. Today Phys. 2022, 23, 100625.

[103]

Liu, Y.; Xu, S. J.; Zheng, X. Y.; Lu, Y. K.; Li, D.; Jiang, D. L. Ru-doping modulated cobalt phosphide nanoarrays as efficient electrocatalyst for hydrogen evolution rection. J. Colloid Interface Sci. 2022, 625, 457–465.

[104]

Chen, H. H.; Zhang, S. S.; Liu, Q.; Yu, P.; Luo, J.; Hu, G. Z.; Liu, X. J. CoSe2 nanocrystals embedded into carbon framework as efficient bifunctional catalyst for alkaline seawater splitting. Inorg. Chem. Commun. 2022, 146, 110170.

[105]

Qiu, B. C.; Zhang, Y. F.; Guo, X. Y.; Ma, Y. X.; Du, M. M.; Fan, J.; Zhu, Y.; Zeng, Z. Y.; Chai, Y. Nitrogen-induced interfacial electronic structure of NiS2/CoS2 with optimized water and hydrogen binding abilities for efficient alkaline hydrogen evolution electrocatalysis. J. Mater. Chem. A 2022, 10, 719–725.

[106]

Wang, P.; Luo, Y. Z.; Zhang, G. X.; Chen, Z. S.; Ranganathan, H.; Sun, S. H.; Shi, Z. C. Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 2022, 14, 120.

[107]

Zhou, J.; Dou, Y. B.; Wu, X. Q.; Zhou, A.; Shu, L.; Li, J. R. Alkali-etched Ni(II)-based metal-organic framework nanosheet arrays for electrocatalytic overall water splitting. Small 2020, 16, 1906564.

[108]

Liu, D. M.; Wang, C.; Zhou, Z. M.; Ye, C. Q.; Yu, R.; Wang, C. Q.; Du, Y. K. Ultra-low Ru doped MOF-derived hollow nanorods for efficient oxygen evolution reaction. Inorg. Chem. Front. 2022, 9, 6158–6166.

[109]

Liu, D. M.; Xu, H.; Wang, C.; Ye, C. Q.; Yu, R.; Du, Y. K. In situ etch engineering of Ru doped NiFe(OH)x/NiFe-MOF nanocomposites for boosting the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 24670–24676.

[110]

Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816.

[111]

Luo, R.; Li, Z. Y.; Li, R. X.; Jiang, C. L.; Qi, R. J.; Liu, M. Q.; Lin, H. C.; Huang, R.; Luo, C. H.; Peng, H. Ultrafine Ru nanoparticles derived from few-layered Ti3C2Tx MXene templated MOF for highly efficient alkaline hydrogen evolution. Int. J. Hydrog. Energy 2022, 47, 32787–32795.

[112]

Li, J. Z.; Hou, C. Z.; Chen, C.; Ma, W. S.; Li, Q.; Hu, L. W.; Lv, X. W.; Dang, J. Collaborative interface optimization strategy guided ultrafine RuCo and MXene heterostructure electrocatalysts for efficient overall water splitting. ACS Nano 2023, 17, 10947–10957.

[113]

Deeloed, W.; Priamushko, T.; Čížek, J.; Suramitr, S.; Kleitz, F. Defect-engineered hydroxylated mesoporous spinel oxides as bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2022, 14, 23307–23321.

[114]

Zou, Z. H.; Cai, M. M.; Zhao, X. H.; Huang, J. F.; Du, J.; Xu, C. L. Defective metal-organic framework derivative by room-temperature exfoliation and reduction for highly efficient oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 14011–14018.

[115]

Wu, X. K.; Xu, W. X.; Wang, Z. C.; Li, H. D.; Wang, M. H.; Zhang, D.; Lai, J. P.; Wang, L. Rapid microwave synthesis of Ru-supported partially carbonized conductive metal-organic framework for efficient hydrogen evolution. Chem. Eng. J. 2022, 431, 133247.

[116]

Bai, X.; Duan, Z. Y.; Nan, B.; Wang, L. M.; Tang, T. M.; Guan, J. Q. Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. Chin. J. Catal. 2022, 43, 2240–2248.

[117]

Kong, X.; Gao, Q. L.; Bu, S. Y.; Xu, Z. A.; Shen, D.; Liu, B.; Lee, C. S.; Zhang, W. J. Plasma-assisted synthesis of nickel-cobalt nitride-oxide hybrids for high-efficiency electrochemical hydrogen evolution. Mater. Today Energy 2021, 21, 100784.

[118]

Bai, X.; Guan, J. Q. MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 2022, 43, 2057–2090.

[119]

Das, S.; Heasman, P.; Ben, T.; Qiu, S. L. Porous organic materials: Strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515–1563.

[120]

Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

[121]

Liu, M. Y.; Guo, L. P.; Jin, S. B.; Tan, B. E. Covalent triazine frameworks: Synthesis and applications. J. Mater. Chem. A 2019, 7, 5153–5172.

[122]

Tan, L. X.; Tan, B. E. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322–3356.

[123]

Cooper, A. I. Conjugated microporous polymers. Adv. Mater. 2009, 21, 1291–1295.

[124]

Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials. Chem. Commun. 2004, 230–231.

[125]

Yang, C. H.; Yang, Z. D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F. M.; Zhang, G. L. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett. 2019, 4, 2251–2258.

[126]

Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 2016, 28, 4375–4379.

[127]

Chandran, R. K.; Illathvalappil, R. R.; Wakchaure, V. C.; Goudappagouda; Kurungot, S.; Babu, S. S. Metalloporphyrin two-dimensional polymers via metal-catalyst-free C–C bond formation for efficient catalytic hydrogen evolution. ACS Appl. Energy Mater. 2018, 1, 6442–6450.

[128]

Fang, H. B.; Chen, J. X.; Balogun, M. S.; Tong, Y. X.; Zhang, J. Y. Covalently modified electrode with Pt nanoparticles encapsulated in porous organic polymer for efficient electrocatalysis. ACS Appl. Nano Mater. 2018, 1, 6477–6482.

[129]

Jia, H. X.; Sun, Z. J.; Jiang, D. C.; Du, P. W. Covalent cobalt porphyrin framework on multiwalled carbon nanotubes for efficient water oxidation at low overpotential. Chem. Mater. 2015, 27, 4586–4593.

[130]

Boro, B.; Adak, M. K.; Biswas, S.; Sarkar, C.; Nailwal, Y.; Shrotri, A.; Chakraborty, B.; Wong, B. M.; Mondal, J. Electrocatalytic water oxidation performance in an extended porous organic framework with a covalent alliance of distinct Ru sites. Nanoscale 2022, 14, 7621–7633.

[131]

Pan, R. P.; Wu, J. L.; Wang, W. W.; Cheng, C.; Liu, X. K. Robust crystalline aromatic imide-linked two-dimensional covalent organic frameworks confining ruthenium nanoparticles as efficient hydrogen evolution electrocatalyst. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 621, 126511.

[132]

Maiti, S.; Chowdhury, A. R.; Das, A. K. Electrochemically facile hydrogen evolution using ruthenium encapsulated two dimensional covalent organic framework (2D COF). ChemNanoMat 2019, 6, 99–106.

[133]

Zhao, Q.; Chen, S. H.; Ren, H. W.; Chen, C.; Yang, W. Ruthenium nanoparticles confined in covalent organic framework/reduced graphene oxide as electrocatalyst toward hydrogen evolution reaction in alkaline media. Ind. Eng. Chem. Res. 2021, 60, 11070–11078.

[134]

Zhao, Y. X.; Liang, Y.; Wu, D. X.; Tian, H.; Xia, T.; Wang, W. X.; Xie, W. Y.; Hu, X. M.; Tian, X. L.; Chen, Q. Ruthenium complex of sp2 carbon-conjugated covalent organic frameworks as an efficient electrocatalyst for hydrogen evolution. Small 2022, 18, 2107750.

[135]

Gao, X.; Gao, Y. J.; Li, S. Q.; Yang, J.; Zhuang, G. L.; Deng, S. W.; Yao, Z. H.; Zhong, X.; Wei, Z. Z.; Wang, J. G. Defect CTF derived Ru-based catalysts for high performance overall water splitting reaction. J. Energy Chem. 2020, 50, 135–142.

[136]

Xu, C. L.; Wang, H.; Wang, Q.; Wang, Y.; Zhang, Y.; Fan, G. Y. Ruthenium coordinated with triphenylphosphine-hyper-crosslinked polymer: An efficient catalyst for hydrogen evolution reaction and hydrolysis of ammonia borane. Appl. Surf. Sci. 2019, 466, 193–201.

[137]

Ma, R. P.; Wang, X.; Yang, X. L.; Li, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 166–173.

[138]

Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 2014, 5, 2789–2793.

[139]

Zhang, J.; Wang, L. B.; Li, N.; Liu, J. F.; Zhang, W.; Zhang, Z. B.; Zhou, N. C.; Zhu, X. L. A novel azobenzene covalent organic framework. CrystEngComm 2014, 16, 6547–6551.

[140]

Zhao, X. J.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M. Y.; Schlesiger, C.; Praetz, S.; Schmidt, J.; Thomas, A. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 2019, 141, 6623–6630.

[141]

Bhunia, S.; Das, S. K.; Jana, R.; Peter, S. C.; Bhattacharya, S.; Addicoat, M.; Bhaumik, A.; Pradhan, A. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework. ACS Appl. Mater. Interfaces 2017, 9, 23843–23851.

[142]

Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan, J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res. 2022, 15, 8714–8750.

[143]

Ji, J.; Zhang, C. J.; Qin, S. B.; Jin, P. First-principles investigation of two-dimensional covalent-organic framework electrocatalysts for oxygen evolution/reduction and hydrogen evolution reactions. Sustainable Energy Fuels 2021, 5, 5615–5626.

[144]

Zhou, Y. N.; Chen, L. L.; Sheng, L.; Luo, Q. Q.; Zhang, W. H.; Yang, J. L. Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: A DFT study. Nano Res. 2022, 15, 7994–8000.

[145]

Zhuang, X. D.; Zhao, W. X.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. L. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 2016, 7, 4176–4181.

[146]

Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450–3453.

[147]

Jiao, L.; Hu, Y. L.; Ju, H. X.; Wang, C. D.; Gao, M. R.; Yang, Q.; Zhu, J. F.; Yu, S. H.; Jiang, H. L. From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: Efficient electrocatalysts for oxygen reduction. J. Mater. Chem. A 2017, 5, 23170–23178.

[148]

Davankov, V. A.; Rogoshin, S. V.; Tsyurupa, M. P. Macronet isoporous gels through crosslinking of dissolved polystyrene. J. Polym. Sci., Polym. Symp. 1974, 47, 95–101.

[149]

Tsyurupa, M. P.; Davankov, V. A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. React. Funct. Polym. 2006, 66, 768–779.

Nano Research
Pages 982-1002
Cite this article:
Tian C, Liu R, Zhang Y, et al. Ru-doped functional porous materials for electrocatalytic water splitting. Nano Research, 2024, 17(3): 982-1002. https://doi.org/10.1007/s12274-023-6003-5
Topics:

1029

Views

9

Crossref

11

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 21 June 2023
Revised: 06 July 2023
Accepted: 10 July 2023
Published: 05 August 2023
© Tsinghua University Press 2023
Return