AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

N:ZnO/MoS2-heterostructured flexible synaptic devices enabling optoelectronic co-modulation for robust artificial visual systems

Lei Xu1,§Wenxiao Wang1,§Yang Li1,2( )Yonghui Lin1Wenjing Yue1( )Kai Qian2Qinglei Guo2Jeonghyun Kim3Guozhen Shen4( )
School of Information Science and Engineering, University of Jinan, Jinan 250022, China
School of Microelectronics, Shandong University, Jinan 250101, China
Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China

§ Lei Xu and Wenxiao Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Vision is an important function for the brain to perceive and process external information, and its transmission in the brain neural network is affected by the synergistic effect of light and bioelectrical stimuli. In this work, a tailored optoelectronic co-modulation behavior is achieved by designing flexible N:ZnO/MoS2-based heterojunction synaptic devices, and the perception and memory of optoelectronic signals are presented through the device array, which shows great potential for application in bionic visual systems.

Abstract

With the merits of non-contact, highly efficient, and parallel computing, optoelectronic synaptic devices combining sensing and memory in a single unit are promising for constructing neuromorphic computing and artificial visual chip. Based on this, a N:ZnO/ MoS2-heterostructured flexible optoelectronic synaptic device is developed in this work, and its capability in mimicking the synaptic behaviors is systemically investigated under the electrical and light signals. Versatile synaptic functions, including synaptic plasticity, long-term/short-term memory, and learning-forgetting-relearning property, have been achieved in this synaptic device. Further, an artificial visual memory system integrating sense and memory is emulated with the device array, and the visual memory behavior can be regulated by varying the light parameters. Moreover, the optoelectronic co-modulation behavior is verified by applying mixed electric and light signals to the array. In detail, a transient recovery property is discovered when the electric signals are applied in synergy during the decay of the light response, of which property facilitates the development of robust artificial visual systems. Furthermore, by superimposing electrical signals during the light response process, a differentiated response of the array is achieved, which can be used as a proof of concept for the color perception of the artificial visual system.

Electronic Supplementary Material

Download File(s)
12274_2023_6004_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Gu, L. L.; Poddar, S.; Lin, Y. J.; Long, Z. H.; Zhang, D. Q.; Zhang, Q. P.; Shu, L.; Qiu, X.; Kam, M.; Javey, A. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278–282.

[2]

Gong, J. D.; Wei, H. H.; Liu, J. Q.; Sun, L.; Xu, Z. P.; Huang, H.; Xu, W. T. An artificial visual nerve for mimicking pupil reflex. Matter 2022, 5, 1578–1589.

[3]

Wang, Y.; Gong, Y.; Huang, S. M.; Xing, X. C.; Lv, Z. Y.; Wang, J. J.; Yang, J. Q.; Zhang, G. H.; Zhou, Y.; Han, S. T. Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 2021, 12, 5979.

[4]

Meng, J. L.; Wang, T. Y; Zhu, H.; Ji, L.; Bao, W. Z.; Zhou, P.; Chen, L.; Sun, Q. Q.; Zhang, D. W. Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 2022, 22, 81–89.

[5]

Pei, Y. F.; Li, Z. Q.; Li, B.; Zhao, Y.; He, H.; Yan, L.; Li, X. Y.; Wang, J. J.; Zhao, Z.; Sun, Y. et al. A multifunctional and efficient artificial visual perception nervous system with Sb2Se3/CdS-core/shell (SC) nanorod arrays optoelectronic memristor. Adv. Funct. Mater. 2022, 32, 2203454.

[6]

Hung, C. C.; Chiang, Y. C.; Lin, Y. C.; Chiu, Y. C.; Chen, W. C. Conception of a smart artificial retina based on a dual-mode organic sensing inverter. Adv. Sci. 2021, 8, 2100742.

[7]

Seo, S.; Jo, S. H.; Kim, S.; Shim, J.; Oh, S.; Kim, J. H.; Heo, K.; Choi, J. W.; Choi, C.; Oh, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 2018, 9, 5106.

[8]

Yang, X. Y.; Xiong, Z. Y.; Chen, Y. J.; Ren, Y.; Zhou, L.; Li, H. L.; Zhou, Y.; Pan, F.; Han, S. T. A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy. 2020, 78, 105246.

[9]

Kwon, S. M.; Cho, S. W.; Kim, M.; Heo, J. S.; Kim, Y.; Park, S. K. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv. Mater. 2019, 31, 1906433.

[10]

Wang, H. L.; Zhao, Q.; Ni, Z. J.; Li, Q. Y.; Liu, H. T.; Yang, Y. C.; Wang, L. F.; Ran, Y.; Guo, Y. L.; Hu, W. P. et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 2018, 30, 1803961.

[11]

Lou, Z.; Shen, G. Z. Flexible image sensors with semiconducting nanowires for biomimic visual applications. Small Struct. 2021, 2, 2000152.

[12]

Feng, G. D.; Jiang, J.; Li, Y. R.; Xie, D. D.; Tian, B. B.; Wan, Q. Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor. Adv. Funct. Mater. 2021, 31, 2104327.

[13]

Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 2018, 30, 1705400.

[14]

Yan, X. D.; Qian, J. H.; Sangwan, V. K.; Hersam, M. C. Progress and challenges for memtransistors in neuromorphic circuits and systems. Adv. Mater. 2022, 34, 2108025.

[15]

Jia, L. N.; Wu, J. Y.; Zhang, Y. N.; Qu, Y.; Jia, B. H.; Chen, Z. G.; Moss, D. J. Fabrication technologies for the on-chip integration of 2D materials. Small Methods 2022, 6, 2101435.

[16]

Lian, C. Y.; Vagionas, C.; Alexoudi, T.; Pleros, N.; Youngblood, N.; Ríos, C. Photonic (computational) memories: Tunable nanophotonics for data storage and computing. Nanophotonics 2022, 11, 3823–3854.

[17]

Chao, Y. H.; Chen, J. C.; Yang, D. L.; Tseng, Y. J.; Hsu, C. H.; Chen, J. Y. High-performance non-volatile flash photomemory via highly oriented quasi-2D perovskite. Adv. Funct. Mater. 2022, 32, 2112521.

[18]

Wang, W. X.; Gao, S.; Li, Y.; Yue, W. J.; Kan, H.; Zhang, C. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Artificial optoelectronic synapses based on TiNxO2−x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 2021, 31, 2101201.

[19]

Shi, J. L.; Jie, J. S.; Deng, W.; Luo, G.; Fang, X. C.; Xiao, Y. L.; Zhang, Y. J.; Zhang, X. J.; Zhang, X. H. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv. Mater. 2022, 34, 2200380.

[20]

Panca, A.; Panidi, J.; Faber, H.; Stathopoulos, S.; Anthopoulos, T. D.; Prodromakis, T. Flexible oxide thin film transistors, memristors, and their integration. Adv. Funct. Mater. 2023, 33, 2213762.

[21]

Wang, X. Y.; Zong, Y. X.; Liu, D. Y.; Yang, J. H.; Wei, Z. M. Advanced optoelectronic devices for neuromorphic analog based on low-dimensional semiconductors. Adv. Funct. Mater. 2023, 33, 2213894.

[22]

Yang, C.; Sun, B.; Zhou, G. D.; Guo, T.; Ke, C.; Chen, Y. Z.; Shao, J. Y.; Zhao, Y.; Wang, H. Y. Photoelectric Memristor-based machine vision for artificial intelligence applications. ACS Mater. Lett. 2023, 5, 504–526.

[23]

Kuang, J. H.; Liu, K.; Liu, M. H.; Shao, M. C.; Zhu, M. L.; Liu, G. C.; Wen, W.; Chen, J. Y.; Qin, M. C.; Pan, Z. C. et al. Interface defects tuning in polymer-perovskite phototransistors for visual synapse and adaptation functions. Adv. Funct. Mater. 2023, 33, 2209502.

[24]

Hu, Y. X.; Dai, M. J.; Feng, W.; Zhang, X.; Gao, F.; Zhang, S. C.; Tan, B. Y.; Zhang, J.; Shuai, Y.; Fu, Y. Q. et al. Ultralow power optical synapses based on MoS2 layers by indium-induced surface charge doping for biomimetic eyes. Adv. Mater. 2021, 33, 2104960.

[25]

Liu, Q.; Gao, S.; Xu, L.; Yue, W. J.; Zhang, C. W.; Kan, H.; Li, Y.; Shen, G. Z. Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 2022, 51, 3341–3379.

[26]

Li, Y.; Wang, J. H.; Yang, Q.; Shen, G. Z. Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition. Adv. Sci. 2022, 9, 2202123.

[27]

Liu, Q. H.; Yin, L.; Zhao, C.; Wu, Z. A.; Wang, J. Y.; Yu, X. R.; Wang, Z. X.; Wei, W. X.; Liu, Y. N.; Mitrovic, I. Z. et al. All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems. Nano Energy 2022, 97, 107171.

[28]

Hao, Z. Q.; Wang, H. Y.; Jiang, S.; Qian, J.; Xu, X.; Li, Y. T.; Pei, M. J.; Zhang, B. W.; Guo, J. H.; Zhao, H. J. et al. Retina-inspired self-powered artificial optoelectronic synapses with selective detection in organic asymmetric heterojunctions. Adv. Sci. 2022, 9, 2103494.

[29]

Liang, J.; Li, J.; Zhu, H. F.; Han, Y. X.; Wang, Y. R.; Wang, C. X.; Jin, Z.; Zhang, G. M.; Liu, J. One-step fabrication of large-area ultrathin MoS2 nanofilms with high catalytic activity for photovoltaic devices. Nanoscale 2016, 8, 16017–16025.

[30]

Lee, H. M.; Jeong, H. J.; Ok, K. C.; Rim, Y. S.; Park, J. S. Near-infrared photoresponsivity of ZnON thin-film transistor with energy band-tunable semiconductor. ACS Appl. Mater. Interfaces 2018, 10, 30541–30547.

[31]

Park, H. L.; Kim, H.; Lim, D.; Zhou, H. Y.; Kim, Y. H.; Lee, Y.; Park, S.; Lee, T. W. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater. 2020, 32, 1906899.

[32]

Al-Mamun, M.; Zhang, H. M.; Liu, P. R.; Wang, Y.; Cao, J.; Zhao, H. J. Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells. RSC Adv. 2014, 4, 21277.

[33]

Toth, P. S.; Velický, M.; Bissett, M. A.; Slater, T. J. A.; Savjani, N.; Rabiu, A. K.; Rakowski, A. M.; Brent, J. R.; Haigh, S. J.; O’Brien, P. et al. Asymmetric MoS2/graphene/metal sandwiches: Preparation, characterization, and application. Adv. Mater. 2016, 28, 8256–8264.

[34]

Liu, Y. P.; Li, Y. H.; Peng, F.; Lin, Y.; Yang, S. Y.; Zhang, S. S.; Wang, H. J.; Cao, Y. H.; Yu, H. 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 241, 236–245.

[35]

Lee, E.; Kim, T.; Benayad, A.; Hur, J.; Park, G. S.; Jeon, S. High mobility and high stability glassy metal-oxynitride materials and devices. Sci. Rep. 2016, 6, 23940.

[36]

Wang, Z. D.; Li, Q.; Yuan, Y.; Yang, L. Z.; Zhang, H. B.; Liu, Z. W.; Ouyang, J. T.; Chen, Q. N doped ZnO (N:ZnO) film prepared by reactive HiPIMS deposition technique. AIP Adv. 2020, 10, 035122.

[37]

Yang, J. T.; Ge, C.; Du, J. Y.; Huang, H. Y.; He, M.; Wang, C.; Lu, H. B.; Yang, G. Z.; Jin, K. J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, 1801548.

[38]

Gong, J. D.; Wei, H. H.; Ni, Y.; Zhang, S.; Du, Y.; Xu, W. T. Methylammonium halide-doped perovskite artificial synapse for light-assisted environmental perception and learning. Mater. Today Phys. 2021, 21, 100540.

[39]

Kim, S. J.; Lee, T. H.; Yang, J. M.; Yang, J. W.; Lee, Y. J.; Choi, M. J.; Lee, S. A.; Suh, J. M.; Kwak, K. J.; Baek, J. H. et al. Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 2022, 52, 19–30.

[40]

Tang, B. S.; Veluri, H.; Li, Y. D.; Yu, Z. G.; Waqar, M.; Leong, J. F.; Sivan, M.; Zamburg, E.; Zhang, Y. W.; Wang, J. et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 2022, 13, 3037.

[41]

Luo, F. F.; Wu, Y. Z.; Tong, J. W.; Tian, F. B.; Zhang, X. M. Resistive switching and artificial synaptic performances of memristor based on low-dimensional bismuth halide perovskites. Nano Res. 2023, 16, 10108–10119.

[42]

Huang, F.; Fang, F. F.; Zheng, Y.; You, Q.; Li, H. N.; Fang, S. F.; Cong, X. N.; Jiang, K.; Wang, Y.; Han, C. et al. Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res. 2023, 16, 1304–1312.

[43]

Xi, F. B.; Han, Y.; Liu, M. S.; Bae, J. H.; Tiedemann, A.; Grützmacher, D.; Zhao, Q. T. Artificial synapses based on ferroelectric schottky barrier field-effect transistors for neuromorphic applications. ACS Appl. Mater. Interfaces 2021, 13, 32005–32012.

[44]

Wang, X.; Zhou, X.; Cui, A. Y.; Deng, M. H.; Xu, X. H.; Xu, L. P.; Ye, Y.; Jiang, K.; Shang, L. Y.; Zhu, L. Q. et al. Flexo-photoelectronic effect in n-type/p-type two-dimensional semiconductors and a deriving light-stimulated artificial synapse. Mater. Horiz. 2021, 8, 1985–1997.

[45]

Zhong, Y. N.; Wang, T.; Gao, X.; Xu, J. L.; Wang, S. D. Synapse-like organic thin film memristors. Adv. Funct. Mater. 2018, 28, 1800854.

[46]

Ji, X. D.; Paulsen, B. D.; Chik, G. K. K.; Wu, R. H.; Yin, Y. Y.; Chan, P. K. L.; Rivnay, J. Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 2021, 12, 2480.

[47]

Han, C.; Han, X. W.; Han, J. Y.; He, M. Y.; Peng, S. L.; Zhang, C. Y.; Liu, X. C.; Gou, J.; Wang, J. Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv. Funct. Mater. 2022, 32, 2113053.

[48]

Zucker, R. S.; Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405.

[49]

Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2765.

[50]

Kim, S. K.; Kim, J. Y.; Choi, S. Y.; Lee, J. Y.; Jeong, H. Y. Direct observation of conducting nanofilaments in graphene-oxide-resistive switching memory. Adv. Funct. Mater. 2015, 25, 6710–6715.

[51]

Harikesh, P. C.; Yang, C. Y.; Tu, D. Y.; Gerasimov, J. Y.; Dar, A. M.; Armada-Moreira, A.; Massetti, M.; Kroon, R.; Bliman, D.; Olsson, R. et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 2022, 13, 901.

[52]

Dulcis, D.; Spitzer, N. C. Illumination controls differentiation of dopamine neurons regulating behaviour. Nature 2008, 456, 195–201.

[53]

Martin, S. J.; Grimwood, P. D.; Morris, R. G. M. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 2000, 23, 649–711.

[54]

Kim, D.; Min, W. K.; Kim, H. T.; Chung, J.; Kim, M. S.; Kim, H. J. Realization of enhanced long-term visual memory for indium-gallium-zinc oxide-based optical synaptic transistor. Adv. Opt. Mater. 2022, 10, 2200558.

[55]

Atkinson, R. C.; Shiffrin, R. M. Human memory: A proposed system and its control processes. Psychol. Learn. Motiv. 1968, 2, 89–195.

Nano Research
Pages 1902-1912
Cite this article:
Xu L, Wang W, Li Y, et al. N:ZnO/MoS2-heterostructured flexible synaptic devices enabling optoelectronic co-modulation for robust artificial visual systems. Nano Research, 2024, 17(3): 1902-1912. https://doi.org/10.1007/s12274-023-6004-4
Topics:

937

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 10 May 2023
Revised: 28 June 2023
Accepted: 13 July 2023
Published: 12 September 2023
© Tsinghua University Press 2023
Return