Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Metal nanowires show promise in a broad range of applications and can be fabricated via a number of methods, such as vapor–liquid–solid process and template-based electrodeposition. However, the synthesis of Al nanowires (NWs) is still challenging from the stable alumina substrate. In this work, the Ni-catalyzed fabrication of Al NWs has been realized using various Al2O3 substrates. The growth dynamics of Al NWs on Ni/Al2O3 was studied using in situ transmission electron microscopy (TEM). The effect of alumina structures, compositions, and growth temperature were investigated. The growth of Al NWs correlates with the Na addition to the alumina support. Since no eutectic mixture of nickel aluminide was formed, a mechanism of Ni-catalyzed reduction of Al2O3 for Al NWs growth has been proposed instead of the vapor–liquid–solid mechanism. The key insights reported here are not restricted to Ni-catalyzed Al NWs growth but can be extended to understanding the dynamic change and catalytic performance of Ni/Al2O3 under working conditions.
Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.
Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.
Özer, M. M.; Thompson, J. R.; Weitering, H. H. Hard superconductivity of a soft metal in the quantum regime. Nat. Phys. 2006, 2, 173–176.
Zgirski, M.; Riikonen, K. P.; Touboltsev, V.; Arutyunov, K. Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett. 2005, 5, 1029–1033.
Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.
Farbod, B.; Cui, K.; Kupsta, M.; Kalisvaart, W. P.; Memarzadeh, E.; Kohandehghan, A.; Zahiri, B.; Mitlin, D. Array geometry dictates electrochemical performance of Ge nanowire lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 16770–16785.
Kallesøe, C.; Wen, C. Y.; Booth, T. J.; Hansen, O.; Bøggild, P.; Ross, F. M.; Mølhave, K. In situ TEM creation and electrical characterization of nanowire devices. Nano Lett. 2012, 12, 2965–2970.
Kim, J. H.; Kim, J. G.; Song, J.; Bae, T. S.; Kim, K. H.; Lee, Y. S.; Pang, Y.; Oh, K. H.; Chung, H. S. Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires. Appl. Surf. Sci. 2018, 436, 556–561.
Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.
Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.
Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293, 1455–1457.
Senichev, A.; Corfdir, P.; Brandt, O.; Ramsteiner, M.; Breuer, S.; Schilling, J.; Geelhaar, L.; Werner, P. Electronic properties of wurtzite GaAs: A correlated structural, optical, and theoretical analysis of the same polytypic GaAs nanowire. Nano Res. 2018, 11, 4708–4721.
Li, C. L.; Yamahara, H.; Lee, Y.; Tabata, H.; Delaunay, J. J. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing. Nanotechnology 2015, 26, 305503.
Cho, I. H.; Kim, D. H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater. Res. 2020, 24, 6.
Yogeswaran, U.; Chen, S. M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290–313.
Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.
He, Z.; Hassan, M.; Ju, H. X.; Wang, R.; Wang, J. L.; Chen, J. F.; Zhu, J. F.; Liu, J. W.; Yu, S. H. Stability and protection of nanowire devices in air. Nano Res. 2018, 11, 3353–3361.
Steinhauer, S.; Zhao, J. L.; Singh, V.; Pavloudis, T.; Kioseoglou, J.; Nordlund, K.; Djurabekova, F.; Grammatikopoulos, P.; Sowwan, M. Thermal oxidation of size-selected Pd nanoparticles supported on CuO nanowires: The role of the CuO–Pd interface. Chem. Mater. 2017, 29, 6153–6160.
Alhumaimess, M.; Lin, Z. J.; He, Q.; Lu, L.; Dimitratos, N.; Dummer, N. F.; Conte, M.; Taylor, S. H.; Bartley, J. K.; Kiely, C. J. et al. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chem.—Eur. J. 2014, 20, 1701–1710.
Christopher, P.; Linic, S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. J. Am. Chem. Soc. 2008, 130, 11264–11265.
Dai, D. S.; Xu, H.; Ge, L.; Han, C. C.; Gao, Y. Q.; Li, S. S.; Lu, Y. In-situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation. Appl. Catal. B: Environ. 2017, 217, 429–436.
Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.
Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.
Liu, M. X.; Wu, Z. W.; Kong, X. H.; Zhang, X.; Tan, L. D.; Guo, H.; Li, C. J. One-pot synthesis of toluene from methane and methanol catalyzed by GaN nanowire. Nano Res. 2023, 16, 6512–6516.
Sun, Y. G. Silver nanowires—Unique templates for functional nanostructures. Nanoscale 2010, 2, 1626–1642.
Huo, D.; Kim, M. J.; Lyu, Z. H.; Shi, Y. F.; Wiley, B. J.; Xia, Y. N. One-dimensional metal nanostructures: From colloidal syntheses to applications. Chem. Rev. 2019, 119, 8972–9073.
Wagner, R. S.; Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.
Wu, J. B.; Shan, H.; Chen, W. L.; Gu, X.; Tao, P.; Song, C. Y.; Shang, W.; Deng, T. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 2016, 28, 9686–9712.
Boston, R.; Schnepp, Z.; Nemoto, Y.; Sakka, Y.; Hall, S. R. In situ TEM observation of a microcrucible mechanism of nanowire growth. Science 2014, 344, 623–626.
Chou, Y. C.; Panciera, F.; Reuter, M. C.; Stach, E. A.; Ross, F. M. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy. Chem. Commun. 2016, 52, 5686–5689.
Wen, C. Y.; Reuter, M. C.; Tersoff, J.; Stach, E. A.; Ross, F. M. Structure, growth kinetics, and ledge flow during vapor–solid–solid growth of copper-catalyzed silicon nanowires. Nano Lett. 2010, 10, 514–519.
Wu, Y. Y.; Yang, P. D. Direct observation of vapor–liquid–solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.
Gamalski, A. D.; Tersoff, J.; Stach, E. A. Atomic resolution in situ imaging of a double-bilayer multistep growth mode in gallium nitride nanowires. Nano Lett. 2016, 16, 2283–2288.
Maliakkal, C. B.; Mårtensson, E. K.; Tornberg, M. U.; Jacobsson, D.; Persson, A. R.; Johansson, J.; Wallenberg, L. R.; Dick, K. A. Independent control of nucleation and layer growth in nanowires. ACS Nano 2020, 14, 3868–3875.
Benson, J.; Boukhalfa, S.; Magasinski, A.; Kvit, A.; Yushin, G. Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications. ACS Nano 2012, 6, 118–125.
Sharma, S. K.; Kim, M. S.; Kim, D. Y.; Yu, J. S. Al nanorod thin films as anode electrode for Li ion rechargeable batteries. Electrochim. Acta 2013, 87, 872–879.
Brunbauer, F. M.; Bertagnolli, E.; Majer, J.; Lugstein, A. Electrical transport properties of single-crystal Al nanowires. Nanotechnology 2016, 27, 385704.
Lee, Y. J.; Lee, C.; Lee, H. M. Synthesis of oxide-free aluminum nanoparticles for application to conductive film. Nanotechnology 2018, 29, 055602.
Kondo, T.; Kitagishi, N.; Fukushima, T.; Yanagishita, T.; Masuda, H. Fabrication of aluminum nanowires by mechanical deformation of Al using anodic porous alumina molds. Mater. Express 2016, 6, 363–366.
Nesbitt, N. T.; Merlo, J. M.; Rose, A. H.; Calm, Y. M.; Kempa, K.; Burns, M. J.; Naughton, M. J. Aluminum nanowire arrays via directed assembly. Nano Lett. 2015, 15, 7294–7299.
Pang, Y. T.; Meng, G. W.; Zhang, L. D.; Shan, W. J.; Zhang, C.; Gao, X. Y.; Zhao, A. W. Synthesis of ordered Al nanowire arrays. Solid State Sci. 2003, 5, 1063–1067.
Lee, J. W.; Kang, M. G.; Kim, B. S.; Hong, B. H.; Whang, D.; Hwang, S. W. Single crystalline aluminum nanowires with ideal resistivity. Scr. Mater. 2010, 63, 1009–1012.
Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Lee, S. T. Nucleation and growth of Si nanowires from silicon oxide. Phys. Rev. B 1998, 58, R16024.
Wu, C. F.; Wang, Z. C.; Wang, L. Z.; Huang, J.; Williams, P. T. Catalytic steam gasification of biomass for a sustainable hydrogen future: Influence of catalyst composition. Waste Biomass Valor 2014, 5, 175–180.
Braaten, O.; Kjekshus, A.; Kvande, H. The possible reduction of alumina to aluminum using hydrogen. JOM 2000, 52, 47–53.
Bahari, M. B.; Phuc, N. H. H.; Alenazey, F.; Vu, K. B.; Ainirazali, N.; Vo, D. V. N. Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol. Catal. Today 2017, 291, 67–75.
Weller, S. W.; Montagna, A. A. Studies of alumina I. Reaction with hydrogen at elevated temperatures. J. Catal. 1971, 21, 303–311.
Jeangros, Q.; Hansen, T. W.; Wagner, J. B.; Damsgaard, C. D.; Dunin-Borkowski, R. E.; Hébert, C.; Van Herle, J.; Hessler-Wyser, A. Reduction of nickel oxide particles by hydrogen studied in an environmental TEM. J. Mater. Sci. 2013, 48, 2893–2907.
Jiang, Y.; Zhang, Z. F.; Yuan, W. T.; Zhang, X.; Wang, Y.; Zhang, Z. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 2018, 11, 42–67.
Zhu, Q. Y.; Zhou, H.; Wang, L.; Wang, L.; Wang, C. T.; Wang, H.; Fang, W.; He, M. Y.; Wu, Q.; Xiao, F. S. Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals. Nat. Catal. 2022, 5, 1030–1037.
Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; VandeVondele, J.; Ekinci, Y.; van Bokhoven, J. A. Catalyst support effects on hydrogen spillover. Nature 2017, 541, 68–71.
Oliveira, R. L.; Bitencourt, I. G.; Passos, F. B. Partial oxidation of methane to syngas on Rh/Al2O3 and Rh/Ce-ZrO2 catalysts. J. Braz. Chem. Soc. 2013, 24, 68–75.
Le, T. A.; Kim, T. W.; Lee, S. H.; Park, E. D. CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases. Korean J. Chem. Eng. 2017, 34, 3085–3091.
Wang, Y. L.; Craven, M.; Yu, X. T.; Ding, J.; Bryant, P.; Huang, J.; Tu, X. Plasma-enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: Insights into the importance of the catalyst surface on the reaction mechanism. ACS Catal. 2019, 9, 10780–10793.
Foppa, L.; Margossian, T.; Kim, S. M.; Müller, C.; Copéret, C.; Larmier, K.; Comas-Vives, A. Contrasting the role of Ni/Al2O3 interfaces in water–gas shift and dry reforming of methane. J. Am. Chem. Soc. 2017, 139, 17128–17139.
Zhu, X. L.; Huo, P. P.; Zhang, Y. P.; Cheng, D. G.; Liu, C. J. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Appl. Catal. B: Environ. 2008, 81, 132–140.
873
Views
15
Downloads
1
Crossref
1
Web of Science
1
Scopus
0
CSCD
Altmetrics
Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.