AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sequential reactant water management by complementary multisite catalysts for surpassing platinum hydrogen evolution activity

Yu Lin1Defang Ding1Shicheng Zhu2Qunlei Wen2Huangjingwei Li2Zhen Li1Youwen Liu2( )Yi Shen1( )
China Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Show Author Information

Graphical Abstract

We proposed a multisite complementary strategy that incorporates hydrophilic Mo and electrophilic V into Ni-based catalysts to divide the distinct steps on atomically dispersive sites and thus realize sequential regulation of the HER process. By management of reactive H2O molecules, the NiMoV oxides multisite catalysts surpass Pt/C hydrogen evolution activity (49 mV@10 mA∙cm−2 over 140 h).

Abstract

Alkaline hydrogen evolution reaction (HER) offers a near-zero-emission approach to advance hydrogen energy. However, the activity limited by the multiple reaction steps involving H2O molecules transfer, absorption, and activation still unqualified the thresholds of economic viability. Herein, we proposed a multisite complementary strategy that incorporates hydrophilic Mo and electrophilic V into Ni-based catalysts to divide the distinct steps on atomically dispersive sites and thus realize sequential regulation of the HER process. The Isotopic labeled in situ Raman spectroscopy describes 4-coordinated hydrogen bonded H2O to be free H2O passing the inner Helmholtz plane in the vicinity of the catalysts under the action of hydrophilic Mo sites. Furthermore, potential-dependent electrochemical impedance spectroscopy (EIS) reveals that electrophilic V sites with abundant 3d empty orbitals could activate the lone-pair electrons in the free H2O molecules to produce more protic hydrogen, and dimerize into H2 at the Ni sites. By the sequential management of reactive H2O molecules, NiMoV oxides multisite catalysts surpass Pt/C hydrogen evolution activity (49 mV@10 mA∙cm−2 over 140 h). Profoundly, this study provides a tangible model to deepen the comprehension of the catalyst–electrolyte interface and create efficient catalysts for diverse reactions.

Electronic Supplementary Material

Download File(s)
12274_2023_6011_MOESM1_ESM.pdf (737.8 KB)

References

[1]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[2]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[3]

Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.

[4]
Qian, G. F.; Chen, W.; Chen, J. L.; Gan, L. Y.; Yu, T. Q.; Pan, M. J.; Zhuo, X. Y.; Yin, S. B. Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation. Green Energy & Environment, in press, https://doi.org/10.1016/j.gee.2022.04.006.
[5]
Lin, Y.; Fang, J. K.; Wang, W. B.; Wen, Q. L.; Huang, D. J.; Ding, D. F.; Li, Z.; Liu, Y. W.; Shen, Y.; Zhai, T. Y. Operando reconstructed molecule fence to stabilize NiFe-based oxygen evolution catalysts. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202300604.
[6]

Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S. N.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

[7]

King, L. A.; Hubert, M. A.; Capuano, C.; Manco, J.; Danilovic, N.; Valle, E.; Hellstern, T. R.; Ayers, K.; Jaramillo, T. F. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 2019, 14, 1071–1074.

[8]

Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH–Universal H2 evolution. Adv. Funct. Mater. 2022, 32, 2107597.

[9]

Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

[10]

Song, F. Z.; Li, W.; Yang, J. Q.; Han, G. Q.; Liao, P. L.; Sun, Y. J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 2018, 9, 4531.

[11]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[12]

Zhu, Z. J.; Yin, H. J.; He, C. T.; Al-Mamun, M.; Liu, P. R.; Jiang, L. X.; Zhao, Y.; Wang, Y.; Yang, H. G.; Tang, Z. Y. et al. Ultrathin transition metal dichalcogenide/3D metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity. Adv. Mater. 2018, 30, 1801171.

[13]

Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

[14]

Jiang, B.; Guo, Y. N.; Kim, J.; Whitten, A. E.; Wood, K.; Kani, K.; Rowan, A. E.; Henzie, J.; Yamauchi, Y. Mesoporous metallic iridium nanosheets. J. Am. Chem. Soc. 2018, 140, 12434–12441.

[15]

Pi, Y. C.; Zhang, N.; Guo, S. J.; Guo, J.; Huang, X. Q. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett. 2016, 16, 4424–4430.

[16]

Luo, W. H.; Wang, Y.; Luo, L. X.; Gong, S.; Wei, M. N.; Li, Y. X.; Gan, X. P.; Zhao, Y. Y.; Zhu, Z. H.; Li, Z. Single-atom and bimetallic nanoalloy supported on nanotubes as a bifunctional electrocatalyst for ultrahigh-current-density overall water splitting. ACS Catal. 2022, 12, 1167–1179.

[17]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[18]

He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y. E.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

[19]

Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.

[20]

Peng, Z.; Jia, D. S.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. F. From water oxidation to reduction: Homologous Ni-Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 2015, 5, 1402031.

[21]

Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 14031–14035.

[22]

Chen, Q. C.; Fite, S.; Fridman, N.; Tumanskii, B.; Mahammed, A.; Gross, Z. Hydrogen evolution catalyzed by corrole-chelated nickel complexes, characterized in all catalysis-relevant oxidation states. ACS Catal. 2022, 12, 4310–4317.

[23]

Yan, Y. T.; Lin, J. H.; Xu, T. X.; Liu, B. S.; Huang, K. K.; Qiao, L.; Liu, S. D.; Cao, J.; Jun, S. C.; Yamauchi, Y. et al. Atomic-level platinum filling into Ni-vacancies of dual-deficient NiO for boosting electrocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2200434.

[24]

Zhou, M.; Cheng, C. Q.; Dong, C. K.; Xiao, L. Y.; Zhao, Y.; Liu, Z. W.; Zhao, X. R.; Sasaki, K.; Cheng, H.; Du, X. W. et al. Dislocation network-boosted PtNi nanocatalysts welded on nickel foam for efficient and durable hydrogen evolution at ultrahigh current densities. Adv. Energy Mater. 2023, 13, 2202595.

[25]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[26]

Jiang, S. H.; Zhang, R. Y.; Liu, H. X.; Rao, Y.; Yu, Y. N.; Chen, S.; Yue, Q.; Zhang, Y. N.; Kang, Y. J. Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 6461–6466.

[27]
Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85.
[28]

Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Marković, N. M. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat. Chem. 2010, 2, 880–885.

[29]

Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17031.

[30]

Symes, D.; Taylor-Cox, C.; Holyfield, L.; Al-Duri, B.; Dhir, A. Feasibility of an oxygen-getter with nickel electrodes in alkaline electrolysers. Mater. Renew. Sustain. Energy 2014, 3, 27.

[31]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 2011, 334, 1256–1260.

[32]

Gong, Y. N.; Cao, C. Y.; Shi, W. J.; Zhang, J. H.; Deng, J. H.; Lu, T. B.; Zhong, D. C. Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202215187.

[33]

Zeng, Z. P.; Gan, L. Y.; Yang, H. B.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

[34]

Wang, W. B.; Wang, Z. T.; Yang, R. O.; Duan, J. Y.; Liu, Y. W.; Nie, A. M.; Li, H. Q.; Xia, B. Y.; Zhai, T. Y. In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew. Chem., Int. Ed. 2021, 60, 22940–22947.

[35]

Ling, Y. F.; Ma, Q. L.; Yu, Y. F.; Zhang, B. Optimization strategies for selective CO2 electroreduction to fuels. Trans. Tianjin Univ. 2021, 27, 180–200.

[36]

Li, S.; Guan, A. X.; Yang, C.; Peng, C.; Lv, X. M.; Ji, Y. L.; Quan, Y. L.; Wang, Q. H.; Zhang, L. J.; Zheng, G. F. Dual-atomic Cu sites for electrocatalytic CO reduction to C2+ products. ACS Mater. Lett. 2021, 3, 1729–1737.

[37]

Zhang, K.; He, Y. C.; Guo, R. Y.; Wang, W. C.; Zhan, Q.; Li, R.; He, T. A. N.; Wu, C.; Jin, M. S. Interstitial carbon-doped PdMo bimetallene for high-performance oxygen reduction reaction. ACS Energy Lett. 2022, 7, 3329–3336.

[38]

Ma, M.; Li, G.; Yan, W.; Wu, Z. Z.; Zheng, Z. P.; Zhang, X. B.; Wang, Q. X.; Du, G. F.; Liu, D. Y.; Xie, Z. X. et al. Single-atom molybdenum engineered platinum nanocatalyst for boosted alkaline hydrogen oxidation. Adv. Energy Mater. 2022, 12, 2103336.

[39]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[40]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

[41]

Jin, H. Y.; Wang, X. S.; Tang, C.; Vasileff, A.; Li, L. Q.; Slattery, A.; Qiao, S. Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 2021, 33, 2007508.

[42]

Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: Impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem. Mater. 2011, 23, 4988–5000.

[43]
Wen, Q. L.; Lin, Y.; Yang, Y.; Gao, R. J.; Ouyang, N. Q.; Ding, D. F.; Liu, Y. W.; Zhai, T. Y. In situ chalcogen leaching manipulates reactant interface toward efficient amine electrooxidation. ACS Nano 2022, 16, 9572–9582.
[44]
Luo, H.; Wang, K.; Lin, F. X.; Lv, F.; Zhou, J. H.; Zhang, W. Y.; Wang, D. W.; Zhang, W. S.; Zhang, Q. H.; Gu, L. et al. Amorphous MoOx with high oxophilicity interfaced with PtMo alloy nanoparticles boosts anti-CO hydrogen electrocatalysis. Adv. Mater., in press, https://doi.oorg/10.1002/ADMA.202211854.
[45]

Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

[46]

Qian, G. F.; Chen, J. L.; Yu, T. Q.; Liu, J. C.; Luo, L.; Yin, S. B. Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 2022, 14, 20.

[47]

Sari, F. N. I.; Chen, H. S.; Anbalagan, A. K.; Huang, Y. J.; Haw, S. C.; Chen, J. M.; Lee, C. H.; Su, Y. H.; Ting, J. M. V-doped, divacancy-containing β-FeOOH electrocatalyst for high performance oxygen evolution reaction. Chem. Eng. J. 2022, 438, 135515.

[48]

Bolar, S.; Shit, S.; Kumar, J. S.; Murmu, N. C.; Ganesh, R. S.; Inokawa, H.; Kuila, T. Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Appl. Catal. B Environ. 2019, 254, 432–442.

[49]

Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495–12498.

[50]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[51]

Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C–N bonds to nitrile C≡N bonds. Angew. Chem., Int. Ed. 2020, 59, 16974–16981.

[52]

He, J. L.; Hu, B. B.; Zhao, Y. Superaerophobic electrode with metal@metal-oxide powder catalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 5998–6004.

[53]

Wang, J. Z.; Wang, S. N.; Olayiwola, A.; Yang, N.; Liu, B.; Weigand, J. J.; Wenzel, M.; Du, H. Recovering valuable metals from spent hydrodesulfurization catalyst via blank roasting and alkaline leaching. J. Hazard. Mater. 2021, 416, 125849.

[54]

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 7051–7055.

[55]

Zhao, Y. X.; Wen, Q. L.; Huang, D. J.; Jiao, C.; Liu, Y. W.; Liu, Y.; Fang, J. K.; Sun, M.; Yu, L. Operando reconstruction toward dual-cation-defects Co-containing NiFe oxyhydroxide for ultralow energy consumption industrial water splitting electrolyzer. Adv. Energy Mater. 2023, 13, 2203595.

[56]

Su, H.; Lou, H. M.; Zhao, Z. P.; Zhou, L.; Pang, Y. X.; Xie, H. J.; Rao, C.; Yang, D. J.; Qiu, X. Q. In-situ Mo doped ZnIn2S4 wrapped MoO3 S-scheme heterojunction via Mo–S bonds to enhance photocatalytic HER. Chem. Eng. J. 2022, 430, 132770.

[57]

Liu, G. J.; Bai, H. P.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Lin, H. P.; Zheng, L. R.; Li, Y. Y.; Zhang, B.; Peng, H. S. A highly efficient alkaline HER Co-Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state. J. Mater. Chem. A 2019, 7, 12434–12439.

[58]

Yu, T. Q.; Xu, Q. L.; Chen, J. L.; Qian, G. F.; Zhuo, X. Y.; Yang, H. F.; Yin, S. B. Boosting urea-assisted water splitting by constructing sphere-flower-like NiSe2-NiMoO4 heterostructure. Chem. Eng. J. 2022, 449, 137791.

[59]

Wang, D. W.; Li, Q.; Han, C.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

[60]

Liu, X.; Meng, J. S.; Ni, K.; Guo, R. T.; Xia, F. J.; Xie, J. J.; Li, X.; Wen, B.; Wu, P. J.; Li, M. et al. Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrial-concentration alkali media. Cell Rep. Phys. Sci. 2020, 1, 100241.

[61]

Pandey, R.; Usui, K.; Livingstone, R. A.; Fischer, S. A.; Pfaendtner, J.; Backus, E. H. G.; Nagata, Y.; Fröhlich-Nowoisky, J.; Schmüser, L.; Mauri, S. et al. Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv. 2016, 2, e1501630.

[62]

Wen, Q. L.; Duan, J. Y.; Wang, W. B.; Huang, D. J.; Liu, Y. W.; Shi, Y. L.; Fang, J. K.; Nie, A. M.; Li, H. Q.; Zhai, T. Y. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem., Int. Ed. 2022, 61, e202206077.

[63]

Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huangfu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

[64]

Tong, X. P.; Zhao, Y.; Zhuo, Z. W.; Yang, Z. H.; Wang, S. Z.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Dual-regulation of defect sites and vertical conduction by spiral domain for electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202112953.

[65]

Liu, D.; Liu, J. C.; Cai, W. Z.; Ma, J.; Yang, H. B.; Xiao, H.; Li, J.; Xiong, Y. J.; Huang, Y. Q.; Liu, B. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 2019, 10, 1779.

[66]

Chen, W.; Wu, B. B.; Wang, Y. Y.; Zhou, W.; Li, Y. Y.; Liu, T. Y.; Xie, C.; Xu, L. T.; Du, S. Q.; Song, M. L. et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 2021, 14, 6428–6440.

[67]

Yang, H.; Zhao, Y. H.; Wen, Q. L.; Mi, Y.; Liu, Y. W.; Li, H. Q.; Zhai, T. Y. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano Res. 2021, 14, 4814–4821.

[68]

Choquette, Y.; Brossard, L.; Lasia, A.; Ménard, H. Investigation of hydrogen evolution on Raney–Nickel composite-coated electrodes. Electrochim. Acta 1990, 35, 1251–1256.

Nano Research
Pages 1232-1241
Cite this article:
Lin Y, Ding D, Zhu S, et al. Sequential reactant water management by complementary multisite catalysts for surpassing platinum hydrogen evolution activity. Nano Research, 2024, 17(3): 1232-1241. https://doi.org/10.1007/s12274-023-6011-5
Topics:

701

Views

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 June 2023
Revised: 13 July 2023
Accepted: 15 July 2023
Published: 23 August 2023
© Tsinghua University Press 2023
Return