Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
During criminal case investigations, blood evidence tracing is critical for criminal investigation. However, the blood stains are often cleaned or covered up after the crime, resulting in trace residue and difficult tracking. Therefore, a highly sensitive and specific method for the rapid detection of human blood stains remains urgent. To solve this problem, we established a nanozyme-based strip for rapid detection of blood evidence with high sensitivity and specificity. To construct reliable nanozyme strips, we synthesized CoFe2O4 nanozymes with high peroxidase-like activity by scaling up to gram level, which can be supplied for six million tests, and conjugated antibody as a detection probe in nanozyme strip. The developed CoFe2O4 nanozyme strip can detect human hemoglobin (HGB) at a concentration as low as 1 ng/mL, which is 100 times lower than the commercially available colloidal gold strips (100 ng/mL). Moreover, this CoFe2O4 nanozyme strip showed high generality on 12 substrates and high specificity to human HGB among 13 animal blood samples. Finally, we applied the developed CoFe2O4 nanozyme strip to successfully detect blood stains in three real cases, where the current commercial colloidal gold strip failed to do. The results suggest that the CoFe2O4 nanozyme strip can be used as an effective on-scene detection method for human blood stains, and can further be used as a long-term preserved material evidence for traceability inquiry.
Yang, J.; Mathew, J. J.; Dube, R. R.; Messinger, D. W. Spectral feature characterization methods for blood stain detection in crime scene backgrounds. In Proceedings of SPIE 9840, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII, Baltimore, MD, USA 2016, 98400E.
Faflak, R.; Attinger, D. Experimental study of how far blood spatter stains on fabrics can be found from the blood source, and relevance to crime scene reconstruction. Exp. Fluids 2021, 62, 87.
Schneider, T. D.; Roschitzki, B.; Grossmann, J.; Kraemer, T.; Steuer, A. E. Determination of the time since deposition of blood traces utilizing a liquid chromatography-mass spectrometry-based proteomics approach. Anal. Chem. 2022, 94, 10695–10704.
Zhang, Y. N.; Xue, C. L.; Xu, Y. L.; Cui, S. S.; Ganeev, A. A.; Kistenev, Y. V.; Gubal, A.; Chuchina, V.; Jin, H.; Cui, D. X. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection. Nano Res. 2023, 16, 2968–2979.
Sharma, V.; Kumar, R. Trends of chemometrics in bloodstain investigations. TrAC Trends Anal. Chem. 2018, 107, 181–195.
Castelló, A.; Francès, F.; Corella, D.; Verdú, F. Active oxygen doctors the evidence. Naturwissenschaften 2009, 96, 303–307.
Shyu, R. H.; Shyu, H. F.; Liu, H. W.; Tang, S. S. Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon 2002, 40, 255–258.
Winnepenninckx, A.; Verhoeven, E.; Vermeulen, S.; Bekaert, B. Evaluation of infrared photography for latent bloodstain visualization and the influence of time. Forensic Sci. Int. 2022, 331, 111167.
Suwa, N.; Ikegaya, H.; Takasaka, T.; Nishigaki, K.; Sakurada, K. Human blood identification using the genome profiling method. Leg. Med. 2012, 14, 121–125.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.
Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.
Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.
Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.
Dong, H. J.; Fan, Y. Y.; Zhang, W.; Gu, N.; Zhang, Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem. 2019, 30, 1273–1296.
Meng, X. Q.; Li, D. D.; Chen, L.; He, H.; Wang, Q.; Hong, C. Y.; He, J. Y.; Gao, X. F.; Yang, Y. L.; Jiang, B. et al. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano 2021, 15, 5735–5751.
Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.
Jiang, Y. X.; Rong, H. T.; Wang, Y. F.; Liu, S. G.; Xu, P.; Luo, Z.; Guo, L. M.; Zhu, T.; Rong, H. P.; Wang, D. S. et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. , in press.
Duan, D. M.; Fan, K. L.; Zhang, D. X.; Tan, S. G.; Liang, M. F.; Liu, Y.; Zhang, J. L.; Zhang, P. H.; Liu, W.; Qiu, X. G. et al. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron. 2015, 74, 134–141.
Lin, J. S.; Wang, Q.; Wang, X. Y.; Zhu, Y. Y.; Zhou, X.; Wei, H. Gold alloy-based nanozyme sensor arrays for biothiol detection. Analyst 2020, 145, 3916–3921.
Li, Z.; Liu, F. N.; Chen, C. X.; Jiang, Y. Y.; Ni, P. J.; Song, N. N.; Hu, Y.; Xi, S. B.; Liang, M. M.; Lu, Y. Z. Regulating the N coordination environment of Co single-atom nanozymes for highly efficient oxidase mimics. Nano Lett. 2023, 23, 1505–1513.
Wang, S. Q.; Jin, Y.; Ai, W. H.; Wang, X. F.; Zhang, Z. Q.; Zhou, T.; Zhang, G. D.; Wang, F. H2O2 actuated molybdenum oxide nanodots: Multi-enzyme-like activities, leverage of Fenton reaction, and dual-mode sensitive detection of alendronate sodium. Nano Res. 2023, in press.
Liang, M. M.; Fan, K. L.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D. L.; Lu, D.; Feng, J.; Zhao, J. J.; Yang, L. et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal. Chem. 2013, 85, 308–312.
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.
Zhang, L.; Liu, Z. W.; Deng, Q. Q.; Sang, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2021, 60, 3469–3474.
Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.
Liu, D.; Ju, C. H.; Han, C.; Shi, R.; Chen, X. H.; Duan, D. M.; Yan, J. H.; Yan, X. Y. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 2021, 173, 112817.
Meng, X. Q.; Zou, S. J.; Li, D. D.; He, J. Y.; Fang, L.; Wang, H. J.; Yan, X. Y.; Duan, D. M.; Gao, L. Z. Nanozyme-strip for rapid and ultrasensitive nucleic acid detection of SARS-CoV-2. Biosens. Bioelectron. 2022, 217, 114739.
Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785.
Huang, X. L.; Zhuang, J.; Chen, D.; Liu, H. Y.; Tang, F. Q.; Yan, X. Y.; Meng, X. W.; Zhang, L.; Ren, J. General strategy for designing functionalized magnetic microspheres for different bioapplications. Langmuir 2009, 25, 11657–11663.
Zhao, X. N.; Hu, H. C.; Zhang, F. J.; Zhang, Z. H. Magnetic CoFe2O4 nanoparticle immobilized N-propyl diethylenetriamine sulfamic acid as an efficient and recyclable catalyst for the synthesis of amides via the Ritter reaction. Appl. Catal. A:Gen. 2014, 482, 258–265.
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.
Zhang, K.; Zuo, W.; Wang, Z. Y.; Liu, J.; Li, T. R.; Wang, B. D.; Yang, Z. Y. A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. RSC Adv. 2015, 5, 10632–10640.
Zhang, W.; Hu, S. L.; Yin, J. J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.
Gholami, H.; Koohestani, H.; Ahmadi, M. Synthesis and characterization of CoFe2O4 and CuFe2O4 composited with hematite by impregnation method to remove organic pollutants. Iran. J. Mater. Sci. Eng. 2021, 18, 12–20.