Niobium oxide (Nb2O5) is a promising material in photocatalytic, solar cell, electronic like electron field emitters, and especially lithium-ion batteries (LIBs) because of its adjustable morphologies, controllable crystal type, stable structure, and environmental friendliness. However, its low electrical conductivity lowers the rate performance and limits the practical applications in LIBs. Herein, we present a one-step solid-state synthesis of orthogonal Nb2O5 nanocrystals/graphene composites (Nb2O5/G) as high-performance anode materials in LIBs. Benefiting from the nanoscale crystalline structure Nb2O5 and highly-conductive graphene substrate, the as-prepared Nb2O5/G exhibits excellent electrochemical performances. Impressively, a reversible structural phase transition between orthogonal Nb2O5 and tetragonal Li1−xNbO2 (0 < x < 1) was verified by ex-situ transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). After coupling with graphite cathode based on PF6− intercalation/deintercalation mechanisms, Nb2O5/G||graphite dual-ion batteries (DIBs) full cell delivers good electrochemical performance in terms of cyclic performance and rate capability. We believe this work can provide a clear route towards developing advanced transition metal oxide/graphene composite anode and a comprehension of its electrochemical reaction mechanism.
Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.
Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.
Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.
Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.
Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.
Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.
Zhang, H. Y.; Geng, Y. B.; Huang, J.; Wang, Z. X.; Du, K.; Li, H. Y. Charge and mass transport mechanisms in two-dimensional covalent organic frameworks (2D COFs) for electrochemical energy storage devices. Energy Environ. Sci. 2023, 16, 889–951.
Han, M. M.; Yao, J. J.; Huang, J. W.; Tang, Y.; Wu, X. W.; Lu, B. A.; Zhou, J. Synergistic chemical and electrochemical strategy for high-performance Zn//MnO2 batteries. Chin. Chem. Lett. 2023, 34, 107493.
Li, D. Y.; Zhao, L. L.; Wang, J.; Yang, C. P. Tailoring the d-band center over isomorphism pyrite catalyst for optimized intrinsic affinity to intermediates in lithium-oxygen batteries. Adv. Energy Mater. 2023, 13, 2204057.
Chen, W. Y.; Salvatierra, R. V.; Li, J. T.; Kittrell, C.; Beckham, J. L.; Wyss, K. M.; La, N.; Savas, P. E.; Ge, C.; Advincula, P. A. et al. Flash recycling of graphite anodes. Adv. Mater. 2023, 35, 2207303.
Zhang, Y. B.; Qin, J. D.; Lowe, S. E.; Li, W.; Zhu, Y. X.; Al-Mamun, M.; Batmunkh, M.; Qi, D. C.; Zhang, S. Q.; Zhong, Y. L. Enhanced electrochemical production and facile modification of graphite oxide for cost-effective sodium ion battery anodes. Carbon 2021, 177, 71–78.
Zeng, S. F.; Chen, X. J.; Xu, R.; Wu, X. J.; Feng, Y. Z.; Zhang, H. B.; Peng, S. M.; Yu, Y. Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms. Nano Energy 2020, 73, 104807.
Wang, L.; Zhu, G. Y.; Lin, Y. H.; Wang, Y.; Zhu, Q. S.; Dai, Z. H. MOF-derived hierarchical porous carbon octahedrons for aluminum-ion batteries. Carbon 2023, 202, 305–313.
Wang, L.; Song, X. M.; Hu, Y.; Yan, W.; Tie, Z. X.; Jin, Z. Initial-anode-free aluminum ion batteries: In-depth monitoring and mechanism studies. Energy Storage Mater. 2022, 44, 461–468.
Lin, M. C.; Gong, M.; Lu, B. A.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328.
Angell, M.; Pan, C. J.; Rong, Y. M.; Yuan, C. Z.; Lin, M. C.; Hwang, B. J.; Dai, H. J. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. USA 2017, 114, 834–839.
Wang, L.; Zeng, X. X.; Huang, F.; Li, C. Y. X.; Liu, Y.; Zhu, Q. S.; Dai, Z. H. Macaroni-like blue-gray Nb2O5 nanotubes for high-reversible lithium-ion storage. Adv. Energy Sustainability Res. 2021, 2, 2100028.
Yang, K.; Liu, Q. R.; Zheng, Y. P.; Yin, H.; Zhang, S. Q.; Tang, Y. B. Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 6326–6332.
Zheng, R. T.; Yu, H. X.; Zhang, X. K.; Ding, Y.; Xia, M. T.; Cao, K. Z.; Shu, J.; Vlad, A.; Su, B. L. A TiSe2-graphite dual ion battery: Fast Na-ion insertion and excellent stability. Angew. Chem., Int. Ed. 2021, 60, 18430–18437.
Li, W. H.; Li, Y. M.; Liu, X. F.; Gu, Z. Y.; Liang, H. J.; Zhao, X. X.; Guo, J. Z.; Wu, X. L. All-climate and ultrastable dual-ion batteries with long life achieved via synergistic enhancement of cathode and anode interfaces. Adv. Funct. Mater. 2022, 32, 2201038.
Hu, Z.; Liu, Q. N.; Zhang, K.; Zhou, L. M.; Li, L.; Chen, M. Z.; Tao, Z. L.; Kang, Y. M.; Mai, L. Q.; Chou, S. L. et al. All carbon dual ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 35978–35983.
Wang, H. Z.; Qin, N.; Li, Y. Z.; Li, Z. Q.; Zhang, F. C.; Luo, W.; Zeng, C.; Lu, Z. G.; Cheng, H. Nafion as a facile binder additive stabilizes solid electrolyte interphase on graphite anode. Carbon 2023, 205, 435–443.
Zhang, H.; Yang, Y.; Ren, D. S.; Wang, L.; He, X. M. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Mater. 2021, 36, 147–170.
Schweidler, S.; de Biasi, L.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Volume changes of graphite anodes revisited: A combined operando X-ray diffraction and in situ pressure analysis study. J. Phys. Chem. C 2018, 122, 8829–8835.
Li, N. N.; Liu, Y.; Ji, X. Y.; Feng, J. X.; Wang, K.; Xie, J. Y.; Lei, G. L.; Liu, X. H.; Guo, X. X.; Zhang, J. Polydopamine-mediated synthesis of Si@carbon@graphene aerogels for enhanced lithium storage with long cycle life. Chin. Chem. Lett. 2021, 32, 3787–3792.
Liu, R. J.; Li, N.; Zhao, E. Y.; Zhao, J. K.; Yang, L. X.; Wang, W. J.; Liu, H. J.; Zeng, C. L. Facile molten salt synthesis of carbon-anchored TiN nanoparticles for durable high-rate lithium-ion battery anodes. Mater. Futures 2022, 1, 045102.
Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.
Zhang, X. L.; Tang, Y. B.; Zhang, F.; Lee, C. S. A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 2016, 6, 1502588.
He, S. G.; Wang, S. F.; Chen, H. D.; Hou, X. H.; Shao, Z. P. A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries. J. Mater. Chem. A 2020, 8, 2571–2580.
McDowell, M. T.; Lee, S. W.; Wang, C. M.; Cui, Y. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy 2012, 1, 401–410.
Cheong, J. Y.; Kim, C.; Jung, J. W.; Yoon, K. R.; Cho, S. H.; Youn, D. Y.; Jang, H. Y.; Kim, I. D. Formation of a surficial bifunctional nanolayer on Nb2O5 for ultrastable electrodes for lithium-ion battery. Small 2017, 13, 1603610.
Zhang, C.; Sun, S. J.; Wu, M. F.; Zhao, X. Y. Bismuth chloride@mesocellular carbon foam nanocomposite cathode materials for rechargeable chloride ion batteries. Chin. Chem. Lett. 2022, 33, 2200–2204.
Yang, Y. C.; Xiao, J. Y.; Xia, Y.; Xi, X. Y.; Li, T. T.; Yang, D.; Dong, A. G. Assembly of CoFe2O4 nanocrystals into superparticles with tunable porosities for use as anode materials for lithium-ion batteries. ACS Appl. Nano Mater. 2022, 5, 9698–9705.
Feng, K. Y.; Li, Y. X.; Xu, C. Y.; Zhang, M.; Yang, X.; Cheng, Y.; Wang, Y. L.; Yang, L. Y.; Yin, S. E. In-situ partial oxidation of TiVCTx derived TiO2 and V2O5 nanocrystals functionalized TiVCTx MXene as anode for lithium-ion batteries. Electrochim. Acta 2023, 444, 142022.
Jin, A. H.; Chae, S. I.; Park, J. H.; Kim, S. Y.; Lee, S.; Chang, H.; Kim, J. H.; Um, J. H.; Yua, S. H.; Hyeon, T. et al. SnSe nanocrystals decorated on carbon nanotubes for high-performance lithium-ion battery anodes. J. Alloys Compd. 2022, 892, 162057.
Zhou, F. C.; Yang, X. S.; Liu, J. W.; Liu, J.; Hu, R. Z.; Ouyang, L. Z.; Zhu, M. In-situ introducing TiP2 nanocrystals in black phosphorus anode to promote high rate-capacity synergy. J. Power Sources 2021, 499, 229979.
Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.
Zhu, J. J.; Li, Y. L.; Yang, B. J.; Liu, L. Y.; Li, J. S.; Yan, X. B.; He, D. Y. A dual carbon-based potassium dual ion battery with robust comprehensive performance. Small 2018, 14, 1801836.
Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.
Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.
Wang, R.; Wu, Q. F.; Wu, M. J.; Zheng, J. X.; Cui, J.; Kang, Q.; Qi, Z. B.; Ma, J. D.; Wang, Z. C.; Liang, H. F. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano Res. 2022, 15, 7227–7233.
Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.
Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.
Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.
Chen, K. F.; Wu, J. A.; Hu, Q. Y.; Lu, Z.; Sun, X. F.; Wang, Z. Q.; Tang, G. B.; Hu, H.; Xue, D. F. Omni-functional crystal: Advanced methods to characterize the composition and homogeneity of lithium niobate melts and crystals. Exploration 2022, 2, 20220059.
Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.
Wang, F.; Aravind, S. S. J.; Wu, H.; Forys, J.; Venkataraman, V.; Ramanujachary, K.; Hu, X. Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites. Mater. Sci. Eng. C 2017, 79, 728–739.
Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.
Chen, D. C.; Wang, J. H.; Chou, T. F.; Zhao, B. T.; El-Sayed, M. A.; Liu, M. L. Unraveling the nature of anomalously fast energy storage in T-Nb2O5. J. Am. Chem. Soc. 2017, 139, 7071–7081.
Qin, L.; Liu, Y.; Xu, S. Y.; Wang, S. C.; Sun, X.; Zhu, S. H.; Hou, L. R.; Yuan, C. Z. In-plane assembled single-crystalline T-Nb2O5 nanorods derived from few-layered Nb2CTx MXene nanosheets for advanced Li-ion capacitors. Small Methods 2020, 4, 2000630.
Li, W.; Hu, C.; Zhou, M.; Wang, K. L.; Li, H. M.; Cheng, S. J.; Jiang, K. The electrochemical synthesis of LiNbO2 in molten salts and its application for lithium ion batteries with high rate capability. Electrochim. Acta 2016, 189, 231–236.
Wong, F. J.; Hong, N. N.; Ramanathan, S. Orbital splitting and optical conductivity of the insulating state of NbO2. Phys. Rev. B 2014, 90, 115135.
Placke, T.; Fromm, O.; Lux, S. F.; Bieker, P.; Rothermel, S.; Meyer, H. W.; Passerini, S.; Winter, M. Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 2012, 159, A1755–A1765.
Li, X.; Ou, X. W.; Tang, Y. B. 6.0 V high-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery. Adv. Energy Mater. 2020, 10, 2002567.