AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Highly selective and efficient photocatalytic NO removal: Charge carrier kinetics and interface molecular process

Huan Shang1,2,§Hongbao Jia1,§Pengpeng Li1Hao Li3Wenbin Zhang1Shuangjun Li2Qing Wang2Shuning Xiao1Ding Wang1Guisheng Li1Dieqing Zhang2( )
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

§ Huan Shang and Hongbao Jia contributed equally to this work.

Show Author Information

Graphical Abstract

This review can shed light on the interface mechanism of NO oxidation and provide illuminating information on designing novel catalysts for efficient NOx control.

Abstract

The widespread nitrogen oxides (NOx, mainly in NO) in the atmosphere have threatened human health and ecological environment. The dilute NO (ppb) is difficult to efficiently remove via the traditional process due to its characteristics of low concentration, wide range, large total amount, etc. Photocatalysis can utilize solar energy to purify NO pollutants under mild conditions, but its application is limited due to the low selectivity of nitrate and poor activity of NO removal. The underlying reason is that the interface mechanism of NO oxidation is not clearly understood, which leads to the inability to accurately regulate the NO oxidation process. Herein, the recent advances in the photocatalytic oxidation of NO are summarized. Firstly, the common strategies to effectively regulate carrier dynamics such as morphology control, facet engineering, defect engineering, plasma coupling, heterojunction and single-atom catalysts are discussed. Secondly, the progress of enhancing the adsorption and activation of reactants such as NO and O2 during NO oxidation is described in detail, and the corresponding NO oxidation mechanisms are enumerated. Finally, the challenges and prospects of photocatalytic NO oxidation are presented in term of nanotechnology for air pollution control. This review can shed light on the interface mechanism of NO oxidation and provide illuminating information on designing novel catalysts for efficient NOx control.

References

[1]

Stemmler, K.; Ammann, M.; Donders, C.; Kleffmann, J.; George, C. Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 2006, 440, 195–198.

[2]

Li, S. P.; Matthews, J.; Sinha, A. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O. Science 2008, 319, 1657–1660.

[3]

Huang, R. J.; Zhang, Y. L.; Bozzetti, C.; Ho, K. F.; Cao, J. J.; Han, Y. M.; Daellenbach, K. R.; Slowik, J. G.; Platt, S. M.; Canonaco, F. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222.

[4]

Guo, S.; Hu, M.; Zamora, M. L.; Peng, J. F.; Shang, D. J.; Zheng, J.; Du, Z. F.; Wu, Z. J.; Shao, M.; Zeng, L. M. et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378.

[5]

Bao, F. X.; Li, M.; Zhang, Y.; Chen, C. C.; Zhao, J. C. Photochemical aging of Beijing urban PM2.5: HONO production. Environ. Sci. Technol. 2018, 52, 6309–6316.

[6]

Liu, C.; Wang, H. H.; Ma, Q. X.; Ma, J. Z.; Wang, Z.; Liang, L. L.; Xu, W. Y.; Zhang, G.; Zhang, X. Y.; Wang, T. et al. Efficient conversion of NO to NO2 on SO2-aged MgO under atmospheric conditions. Environ. Sci. Technol. 2020, 54, 11848–11856.

[7]

Zhang, W. Q.; Tong, S. R.; Jia, C. H.; Wang, L. L.; Liu, B. X.; Tang, G. Q.; Ji, D. S.; Hu, B.; Liu, Z. R.; Li, W. R. et al. Different HONO sources for three layers at the urban area of Beijing. Environ. Sci. Technol. 2020, 54, 12870–12880.

[8]

Wang, J. F.; Li, J. Y.; Ye, J. H.; Zhao, J.; Wu, Y. Z.; Hu, J. L.; Liu, D. T.; Nie, D. Y.; Shen, F. Z.; Huang, X. P. et al. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nat. Commun. 2020, 11, 2844.

[9]

Eeftens, M.; Tsai, M. Y.; Ampe, C.; Anwander, B.; Beelen, R.; Bellander, T.; Cesaroni, G.; Cirach, M.; Cyrys, J.; De Hoogh, K. et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2-results of the ESCAPE project. Atmos. Environ. 2012, 62, 303–317.

[10]

Wang, N.; Lyu, X. P.; Deng, X. J.; Huang, X.; Jiang, F.; Ding, A. J. Aggravating O3 pollution due to NOx emission control in eastern China. Sci. Total Environ. 2019, 677, 732–744.

[11]

Song, C. B.; Wu, L.; Xie, Y. C.; He, J. J.; Chen, X.; Wang, T.; Lin, Y. C.; Jin, T. S.; Wang, A. X.; Liu, Y. et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347.

[12]

Zeng, Y. Y.; Cao, Y. F.; Qiao, X.; Seyler, B. C.; Tang, Y. Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 2019, 663, 329–337.

[13]

Nguyen, V. H.; Nguyen, B. S.; Huang, C. W.; Le, T. T.; Nguyen, C. C.; Nhi Le, T. T.; Heo, D.; Ly, Q. V.; Trinh, Q. T.; Shokouhimehr, M. et al. Photocatalytic NOx abatement: Recent advances and emerging trends in the development of photocatalysts. J. Cleaner Prod. 2020, 270, 121912.

[14]

Lu, Y. F.; Chen, M. J.; Jiang, L.; Cao, J. J.; Li, H. W.; Lee, S. C.; Huang, Y. Oxygen vacancy engineering of photocatalytic nanomaterials for enrichment, activation, and efficient removal of nitrogen oxides with high selectivity: A review. Environ. Chem. Lett. 2022, 20, 3905–3925.

[15]

He, F.; Jeon, W.; Choi, W. Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nat. Commun. 2021, 12, 2528.

[16]

Li, K. L.; Wang, H.; Li, J. J.; Dong, F. Design and mechanism of photocatalytic oxidation for the removal of air pollutants: A review. Environ. Chem. Lett. 2022, 20, 2687–2708.

[17]

Ma, C.; Wei, J. J.; Jiang, K. N.; Chen, J. Q.; Yang, Z. Z.; Yang, X.; Yu, G. L.; Zhang, C.; Li, X. Typical layered structure bismuth-based photocatalysts for photocatalytic nitrogen oxides oxidation. Sci. Total Environ. 2023, 855, 158644.

[18]
Wang, Z. Y.; Shi, X. J.; Chen, M. J.; Cao, J. J.; Ho, W.; Lee, S.; Wang, C. Y.; Huang, Y. Polymeric carbon nitride-based photocatalysts for the removal of nitrogen oxides: A review. Environ. Chem. Lett., in press, https://doi.org/10.1007/s10311-023-01583-5.
[19]

Sun, M. L.; Dong, X. A.; Lei, B.; Li, J. Y.; Chen, P.; Zhang, Y. X.; Dong, F. Graphene oxide mediated co-generation of C-doping and oxygen defects in Bi2WO6 nanosheets: A combined DRIFTS and DFT investigation. Nanoscale 2019, 11, 20562–20570.

[20]

Wu, X. F.; Cheng, J. S.; Li, X. F.; Li, Y. H.; Lv, K. L. Enhanced visible photocatalytic oxidation of NO by repeated calcination of g-C3N4. Appl. Surf. Sci. 2019, 465, 1037–1046.

[21]

Zhang, R. Y.; Zhang, A. L.; Yang, Y.; Cao, Y. H.; Dong, F.; Zhou, Y. Surface modification to control the secondary pollution of photocatalytic nitric oxide removal over monolithic protonated g-C3N4/graphene oxide aerogel. J. Hazard. Mater. 2020, 397, 122822.

[22]

Xiong, M. W.; Tao, Y.; Zhao, Z. S.; Zhu, Q.; Jin, X. Q.; Zhang, S. Q.; Chen, M.; Li, G. S. Porous g-C3N4/TiO2 foam photocatalytic filter for treating NO indoor gas. Environ. Sci. :Nano 2021, 8, 1571–1579.

[23]

Li, S. J.; Shang, H.; Tao, Y.; Li, P. P.; Pan, H. H.; Wang, Q.; Zhang, S.; Jia, H. B.; Zhang, H. N.; Cao, J. Z. et al. Hydroxyl radical-mediated efficient photoelectrocatalytic NO oxidation with simultaneous nitrate storage using a flow photoanode reactor. Angew. Chem., Int. Ed. 2023, 62, e202305538.

[24]

Zhu, S. S.; Wang, D. W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.

[25]

Zhang, P.; Wang, T.; Chang, X. X.; Gong, J. L. Effective charge carrier utilization in photocatalytic conversions. Acc. Chem. Res. 2016, 49, 911–921.

[26]

Clarke, T. M.; Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 2010, 110, 6736–6767.

[27]

Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

[28]

Zhang, L. W.; Mohamed, H. H.; Dillert, R.; Bahnemann, D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 263–276.

[29]

Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

[30]

Hu, J. D.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. In situ fabrication of Bi2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation. Appl. Catal. B Environ. 2017, 217, 224–231.

[31]

Yang, B.; Lv, K. L.; Li, Q.; Fan, J. J.; Li, M. Photosensitization of Bi2O2CO3 nanoplates with amorphous Bi2S3 to improve the visible photoreactivity towards NO oxidation. Appl. Surf. Sci. 2019, 495, 143561.

[32]

Kakuma, Y.; Nosaka, A. Y.; Nosaka, Y. Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water. Phys. Chem. Chem. Phys. 2015, 17, 18691–18698.

[33]

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

[34]

He, Y. Z.; Tan, Y. W.; Song, M. Y.; Tu, Q. L.; Fu, M.; Long, L. J.; Wu, J.; Xu, M. M.; Liu, X. Y. Switching on photocatalytic NO oxidation and proton reduction of NH2-MIL-125(Ti) by convenient linker defect engineering. J. Hazard. Mater. 2022, 430, 128468.

[35]

Zhang, J. L.; Li, Z.; Liu, B.; Chen, M. S.; Zhou, Y. T.; Zhu, M. S. Insights into the role of C–S–C bond in C3N5 for photocatalytic NO deep oxidation: Experimental and DFT exploration. Appl. Catal. B Environ. 2023, 328, 122522.

[36]

Ma, H.; He, Y.; Li, X. F.; Sheng, J. P.; Li, J. Y.; Dong, F.; Sun, Y. J. In situ loading of MoO3 clusters on ultrathin Bi2MoO6 nanosheets for synergistically enhanced photocatalytic NO abatement. Appl. Catal. B Environ. 2021, 292, 120159.

[37]

Cui, W.; Li, J. Y.; Sun, Y. J.; Wang, H.; Jiang, G. M.; Lee, S. C.; Dong, F. Enhancing ROS generation and suppressing toxic intermediate production in photocatalytic NO oxidation on O/Ba co-functionalized amorphous carbon nitride. Appl. Catal. B Environ. 2018, 237, 938–946.

[38]

Li, T. Z.; Zhang, J. J.; Zheng, K. T.; Xu, C. J. A supramolecule-based shape-controllable preparation of carbon nitride nanotubes for the visible light driven photodegradation. Surf. Interfaces 2022, 30, 101894.

[39]

Malik, R.; Tomer, V. K. State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renew. Sust. Energy Rev. 2021, 135, 110235.

[40]

Xiao, S. N.; Zhang, D. Q.; Pan, D. L.; Zhu, W.; Liu, P. J.; Cai, Y.; Li, G. S.; Li, H. X. A chloroplast structured photocatalyst enabled by microwave synthesis. Nat. Commun. 2019, 10, 1570.

[41]

Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

[42]

Wang, H.; He, W. J.; Dong, X. A.; Jiang, G. M.; Zhang, Y. X.; Sun, Y. J.; Dong, F. In situ DRIFT investigation on the photocatalytic NO oxidation mechanism with thermally exfoliated porous g-C3N4 nanosheets. RSC Adv. 2017, 7, 19280–19287.

[43]

Zhou, B. X.; Ding, S. S.; Zhang, B. J.; Xu, L.; Chen, R. S.; Luo, L.; Huang, W. Q.; Xie, Z.; Pan, A. L.; Huang, G. F. Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: From 3D to 2D and 1D nanostructures. Appl. Catal. B Environ. 2019, 254, 321–328.

[44]

Wu, X. B.; Fan, H. Q.; Wang, W. J.; Lei, L.; Chang, X. Y.; Ma, L. T. Multiple ordered porous honeycombed g-C3N4 with carbon ring in-plane splicing for outstanding photocatalytic H2 production. J. Mater. Chem. A 2022, 10, 17817–17826.

[45]

Chen, X. L.; Zhang, H. Q.; Zhang, D. Q.; Miao, Y. C.; Li, G. S. Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation. Appl. Surf. Sci. 2018, 435, 468–475.

[46]

Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4, 1600216.

[47]

Wang, S. Y.; Ding, X.; Yang, N.; Zhan, G. M.; Zhang, X. H.; Dong, G. H.; Zhang, L. Z.; Chen, H. Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal. Appl. Catal. B Environ. 2020, 265, 118585.

[48]

Katal, R.; Masudy-Panah, S.; Tanhaei, M.; Farahani, M. H. D. A.; Hu, J. Y. A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chem. Eng. J. 2020, 384, 123384.

[49]

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

[50]

Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 2009, 131, 4078–4083.

[51]

Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.

[52]

Wan, Y. S.; Li, J. B.; Ni, J. P.; Wang, C.; Ni, C. S.; Chen, H. Crystal-facet and microstructure engineering in ZnO for photocatalytic NO oxidation. J. Hazard. Mater. 2022, 435, 129073.

[53]

Ma, H.; He, Y.; Dong, X. A.; Sheng, J. P.; Chen, S.; Dong, F.; Xie, G. X.; Sun, Y. J. Doping and facet effects synergistically mediated interfacial reaction mechanism and selectivity in photocatalytic NO abatement. J. Colloid Interface Sci. 2021, 604, 624–634.

[54]

Li, Y. H.; Gu, M. L.; Zhang, X. M.; Fan, J. J.; Lv, K. L.; Carabineiro, S. A. C.; Dong, F. 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Mater. Today 2020, 41, 270–303.

[55]

Zheng, Y. M.; Luo, Y.; Ruan, Q. S.; Yu, J.; Guo, X. L.; Zhang, W. J.; Xie, H.; Zhang, Z.; Zhao, J. J.; Huang, Y. Plasma-tuned nitrogen vacancy graphitic carbon nitride sphere for efficient photocatalytic H2O2 production. J. Colloid Interface Sci. 2022, 609, 75–85.

[56]

Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

[57]

Di, J.; Zhu, C.; Ji, M. X.; Duan, M. L.; Long, R.; Yan, C.; Gu, K. Z.; Xiong, J.; She, Y. B.; Xia, J. X. et al. Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 14847–14851.

[58]

Lau, V. W. H.; Yu, V. W. Z.; Ehrat, F.; Botari, T.; Moudrakovski, I.; Simon, T.; Duppel, V.; Medina, E.; Stolarczyk, J. K.; Feldmann, J. et al. Urea-modified carbon nitrides: Enhancing photocatalytic hydrogen evolution by rational defect engineering. Adv. Energy Mater. 2017, 7, 1602251.

[59]

Liu, H. J.; Chen, P.; Yuan, X. Y.; Zhang, Y. X.; Huang, H. W.; Wang, L. A.; Dong, F. Pivotal roles of artificial oxygen vacancies in enhancing photocatalytic activity and selectivity on Bi2O2CO3 nanosheets. Chin. J. Catal. 2019, 40, 620–630.

[60]

Liu, X. M.; Zheng, J. F.; Peng, K.; Qin, G. Z.; Yang, Y. T.; Huang, Z. G. The intrinsic effects of oxygen vacancy and doped non-noble metal in TiO2(B) on photocatalytic oxidation VOCs by visible light driving. J. Environ. Chem. Eng. 2022, 10, 107390.

[61]

Li, Y. H.; Ho, W. K.; Lv, K. L.; Zhu, B. C.; Lee, S. C. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl. Surf. Sci. 2018, 430, 380–389.

[62]

Li, Y. H.; Gu, M. L.; Zhang, M.; Zhang, X. M.; Lv, K. L.; Liu, Y. Q.; Ho, W.; Dong, F. C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for efficient and stable NO photo-oxidation. Chem. Eng. J. 2020, 389, 124421.

[63]

Huo, W. C.; Dong, X. A.; Li, J. Y.; Liu, M.; Liu, X. Y.; Zhang, Y. X.; Dong, F. Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study. Chem. Eng. J. 2019, 361, 129–138.

[64]

Shang, H.; Li, M. Q.; Li, H.; Huang, S.; Mao, C. L.; Ai, Z. H.; Zhang, L. Z. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation. Environ. Sci. Technol. 2019, 53, 6444–6453.

[65]

Hu, Z.; Li, K. N.; Wu, X. F.; Wang, N.; Li, X. F.; Li, Q.; Li, L.; Lv, K. L. Dramatic promotion of visible-light photoreactivity of TiO2 hollow microspheres towards NO oxidation by introduction of oxygen vacancy. Appl. Catal. B Environ. 2019, 256, 117860.

[66]

Liao, J. Z.; Chen, L. C.; Sun, M. L.; Lei, B.; Zeng, X. L.; Sun, Y. J.; Dong, F. Improving visible-light-driven photocatalytic NO oxidation over BiOBr nanoplates through tunable oxygen vacancies. Chin. J. Catal. 2018, 39, 779–789.

[67]

Li, H.; Zhu, H. J.; Shi, Y. B.; Shang, H.; Zhang, L. Z.; Wang, J. Vacancy-rich and porous NiFe-layered double hydroxide ultrathin nanosheets for efficient photocatalytic NO oxidation and storage. Environ. Sci. Technol. 2022, 56, 1771–1779.

[68]

Sun, Y. J.; Wang, H.; Xing, Q.; Cui, W.; Li, J. Y.; Wu, S. J.; Sun, L. D. The pivotal effects of oxygen vacancy on Bi2MoO6: Promoted visible light photocatalytic activity and reaction mechanism. Chin. J. Catal. 2019, 40, 647–655.

[69]

Liao, J. Z.; Cui, W.; Li, J. Y.; Sheng, J. P.; Wang, H.; Dong, X. A.; Chen, P.; Jiang, G. M.; Wang, Z. M.; Dong, F. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem. Eng. J. 2020, 379, 122282.

[70]

Li, Y. H.; Gu, M. L.; Shi, T.; Cui, W.; Zhang, X. M.; Dong, F.; Cheng, J. S.; Fan, J. J.; Lv, K. L. Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity. Appl. Catal. B Environ. 2020, 262, 118281.

[71]

Rao, F.; Zhu, G. Q.; Zhang, W. B.; Xu, Y. H.; Cao, B. W.; Shi, X. J.; Gao, J. Z.; Huang, Y. H.; Huang, Y.; Hojamberdiev, M. Maximizing the formation of reactive oxygen species for deep oxidation of NO via manipulating the oxygen-vacancy defect position on (BiO)2CO3. ACS Catal. 2021, 11, 7735–7749.

[72]

Chen, F.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 2021, 33, 2005256.

[73]

Cheng, G.; Liu, X.; Song, X. J.; Chen, X.; Dai, W. X.; Yuan, R. S.; Fu, X. Z. Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies. Appl. Catal. B Environ. 2020, 277, 119196.

[74]

Wang, Z. Y.; Chen, M. J.; Huang, Y.; Shi, X. J.; Zhang, Y. F.; Huang, T. T.; Cao, J. J.; Ho, W.; Lee, S. C. Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. Appl. Catal. B Environ. 2018, 239, 352–361.

[75]

Yuan, C. W.; Chen, R. M.; Wang, J. D.; Wu, H. Z.; Sheng, J. P.; Dong, F.; Sun, Y. J. La-doping induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression. J. Hazard. Mater. 2020, 400, 123174.

[76]

Xia, X.; Xie, C.; Xu, B. G.; Ji, X. S.; Gao, G. G.; Yang, P. Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J. Ind. Eng. Chem. 2022, 105, 303–312.

[77]

Zhou, M.; Dong, G. H.; Yu, F. K.; Huang, Y. The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method. Appl. Catal. B Environ. 2019, 256, 117825.

[78]

Dong, X. A.; Li, J. Y.; Xing, Q.; Zhou, Y.; Huang, H. W.; Dong, F. The activation of reactants and intermediates promotes the selective photocatalytic NO conversion on electron-localized Sr-intercalated g-C3N4. Appl. Catal. B Environ. 2018, 232, 69–76.

[79]

Zhou, M.; Dong, G. H.; Ma, J. L.; Dong, F.; Wang, C. Y.; Sun, J. W. Photocatalytic removal of NO by intercalated carbon nitride: The effect of group IIA element ions. Appl. Catal. B Environ. 2020, 273, 119007.

[80]

Chen, X. L.; Cai, Y.; Liang, R.; Tao, Y.; Wang, W. C.; Zhao, J. J.; Chen, X. F.; Li, H. X.; Zhang, D. Q. NH2-UiO-66(Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis. Appl. Catal. B Environ. 2020, 267, 118687.

[81]

Ding, X.; Song, X.; Li, P. N.; Ai, Z. H.; Zhang, L. Z. Efficient visible light driven photocatalytic removal of NO with aerosol flow synthesized B, N-codoped TiO2 hollow spheres. J. Hazard. Mater. 2011, 190, 604–612.

[82]

Lu, Z. Z.; Li, S. Q.; Xiao, J. Y. K-Ca synergetic modified g-C3N4 for efficient photocatalytic NO removal with low-NO2-emission. Catal. Lett. 2023, 153, 2558–2570.

[83]

Li, S. W.; Miao, P.; Zhang, Y. Y.; Wu, J.; Zhang, B.; Du, Y. C.; Han, X. J.; Sun, J. M.; Xu, P. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2021, 33, 2000086.

[84]

Ma, X. C.; Dai, Y.; Yu, L.; Huang, B. B. Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 2016, 5, e16017–e16017.

[85]

Liu, Z. X.; An, Y. R.; Zhang, W. B.; Zhu, L. J.; Zhu, G. Q. Au nanoparticles modified oxygen-vacancies-rich Bi4Ti3O12 heterojunction for efficient photocatalytic NO removal with high selectivity. J. Alloys Compd. 2023, 942, 169018.

[86]

Chen, Z.; Yin, H. B.; Wang, R.; Peng, Y.; You, C. F.; Li, J. H. Efficient electron transfer by plasmonic silver in SrTiO3 for low-concentration photocatalytic NO oxidation. Environ. Sci. Technol. 2022, 56, 3604–3612.

[87]

Sun, M. L.; Zhang, W. D.; Sun, Y. J.; Zhang, Y. X.; Dong, F. Synergistic integration of metallic Bi and defects on BiOI: Enhanced photocatalytic NO removal and conversion pathway. Chin. J. Catal. 2019, 40, 826–836.

[88]

Wang, H.; Zhang, W. D.; Li, X. W.; Li, J. Y.; Cen, W. L.; Li, Q. Y.; Dong, F. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres. Appl. Catal. B Environ. 2018, 225, 218–227.

[89]

Li, X. W.; Zhang, W. D.; Li, J. Y.; Jiang, G. M.; Zhou, Y.; Lee, S.; Dong, F. Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3. Appl. Catal. B Environ. 2019, 241, 187–195.

[90]

Wang, Z. P.; Lin, Z. P.; Shen, S. J.; Zhong, W. W.; Cao, S. W. Advances in designing heterojunction photocatalytic materials. Chin. J. Catal. 2021, 42, 710–730.

[91]

Liu, Y.; Pan, D. L.; Xiong, M. W.; Tao, Y.; Chen, X. F.; Zhang, D. Q.; Huang, Y.; Li, G. S. In-situ fabrication SnO2/SnS2 heterostructure for boosting the photocatalytic degradation of pollutants. Chin. J. Catal. 2020, 41, 1554–1563.

[92]

Yang, X. F.; Tian, L.; Zhao, X. L.; Tang, H.; Liu, Q. Q.; Li, G. S. Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Appl. Catal. B Environ. 2019, 244, 240–249.

[93]

Cai, H. R.; Wang, B.; Xiong, L. F.; Bi, J. L.; Yuan, L. Y.; Yang, G. D.; Yang, S. C. Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 256, 117853.

[94]

Li, H. J.; Zhou, Y.; Tu, W. G.; Ye, J. H.; Zou, Z. G. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 2015, 25, 998–1013.

[95]

Zhang, J. L.; Tao, H. C.; Wu, S. S.; Yang, J. L.; Zhu, M. S. Enhanced durability of nitric oxide removal on TiO2 (P25) under visible light: Enabled by the direct Z-scheme mechanism and enhanced structure defects through coupling with C3N5. Appl. Catal. B Environ. 2021, 296, 120372.

[96]

Jiang, G. M.; Cao, J. W.; Chen, M.; Zhang, X. M.; Dong, F. Photocatalytic NO oxidation on N-doped TiO2/g-C3N4 heterojunction: Enhanced efficiency, mechanism and reaction pathway. Appl. Surf. Sci. 2018, 458, 77–85.

[97]

Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Integration of 3D macroscopic graphene aerogel with 0D-2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide. Appl. Catal. B Environ. 2019, 243, 576–584.

[98]

Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 4519–4524.

[99]

Xie, B. K.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Fabrication of an FAPbBr3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation. Chem. Eng. J. 2022, 430, 132968.

[100]

Kong, X. Y.; Lee, W. Q.; Mohamed, A. R.; Chai, S. P. Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity. Chem. Eng. J. 2019, 372, 1183–1193.

[101]

Nie, J. L.; Zhu, G. Q.; Zhang, W. B.; Gao, J. Z.; Zhong, P.; Xie, X. T.; Huang, Y.; Hojamberdiev, M. Oxygen vacancy defects-boosted deep oxidation of NO by β-Bi2O3/CeO2−δ p-n heterojunction photocatalyst in situ synthesized from Bi/Ce(CO3)(OH) precursor. Chem. Eng. J. 2021, 424, 130327.

[102]

Geng, Q.; Xie, H. T.; He, Y.; Sun, Y. J.; Hou, X. F.; Wang, Z. M.; Dong, F. Atomic interfacial structure and charge transfer mechanism on in-situ formed BiOI/Bi2O2SO4 p-n heterojunctions with highly promoted photocatalysis. Appl. Catal. B Environ. 2021, 297, 120492.

[103]

Bard, A. J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 1979, 10, 59–75.

[104]

Ou, M.; Wan, S. P.; Zhong, Q.; Zhang, S. L.; Song, Y.; Guo, L. N.; Cai, W.; Xu, Y. L. Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance. Appl. Catal. B Environ. 2018, 221, 97–107.

[105]

Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890.

[106]

Geng, Y. X.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Z-scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Appl. Catal. B Environ. 2021, 280, 119409.

[107]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[108]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[109]
Gan, T., Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, https://doi.org/10.1007/s12274-023-5700-4.
[110]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[111]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[112]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, e202303185.

[113]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

[114]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0-Coδ+ interface double-site-mediated C-C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[115]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-Air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[116]

Feng, H.; Li, H. F.; Liu, X. Y.; Huang, Y. M.; Pan, Q.; Peng, R.; Du, R. Y.; Zheng, X. X.; Yin, Z. Y.; Li, S. Q. et al. Porphyrin-based Ti-MOFs conferred with single-atom Pt for enhanced photocatalytic hydrogen evolution and NO removal. Chem. Eng. J. 2022, 428, 132045.

[117]

Hu, L. Z.; Wang, T.; Nie, Q. Q.; Liu, J. Y.; Cui, Y. P.; Zhang, K. F.; Tan, Z. C.; Yu, H. S. Single Pd atoms anchored graphitic carbon nitride for highly selective and stable photocatalysis of nitric oxide. Carbon 2022, 200, 187–198.

[118]

Li, C. F.; Pan, W. G.; Zhang, Z. R.; Wu, T.; Guo, R. T. Recent progress of single-atom photocatalysts applied in energy conversion and environmental protection. Small 2023, 19, 2300460.

[119]

Meng, G.; Lan, W.; Zhang, L. L.; Wang, S. B.; Zhang, T. H.; Zhang, S.; Xu, M.; Wang, Y.; Zhang, J.; Yue, F. X. et al. Synergy of single atoms and Lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives. J. Am. Chem. Soc. 2023, 145, 12884–12893.

[120]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[121]

Zhang, Z. R.; Feng, C.; Liu, C. X.; Zuo, M.; Qin, L.; Yan, X. P.; Xing, Y. L.; Li, H. L.; Si, R.; Zhou, S. M. et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 2020, 11, 1215.

[122]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[123]

Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem., Int. Ed. 2022, 61, e202201655.

[124]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[125]

Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

[126]

Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

[127]

Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.

[128]

Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936.

[129]

Cao, Y. J.; Chen, S.; Luo, Q. Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L. L.; Lu, J. L.; Yang, J. L.; Yao, T. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191–12196.

[130]

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

[131]

Zhang, J.; Wu, X.; Cheong, W. C.; Chen, W. X.; Lin, R.; Li, J.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C. et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.

[132]

Hu, Z.; Li, X. F.; Zhang, S. S.; Li, Q.; Fan, J. J.; Qu, X. L.; Lv, K. L. Fe1/TiO2 hollow microspheres: Fe and Ti dual active sites boosting the photocatalytic oxidation of NO. Small 2020, 16, 2004583.

[133]

Liu, G. M.; Huang, Y.; Lv, H. Q.; Wang, H.; Zeng, Y. B.; Yuan, M. Z.; Meng, Q. G.; Wang, C. Y. Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Appl. Catal. B Environ. 2021, 284, 119683.

[134]

Zhang, R. Y.; Cao, Y. H.; Doronkin, D. E.; Ma, M. Z.; Dong, F.; Zhou, Y. Single-atom dispersed Zn-N3 active sites bridging the interlayer of g-C3N4 to tune NO oxidation pathway for the inhibition of toxic by-product generation. Chem. Eng. J. 2023, 454, 140084.

[135]

Dong, F.; Wang, Z. Y.; Li, Y. H.; Ho, W. K.; Lee, S. C. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination. Environ. Sci. Technol. 2014, 48, 10345–10353.

[136]

Chen, R. M.; Li, J. Y.; Wang, H.; Chen, P.; Dong, X. A.; Sun, Y. J.; Zhou, Y.; Dong, F. Photocatalytic reaction mechanisms at a gas-solid interface for typical air pollutant decomposition. J. Mater. Chem. A 2021, 9, 20184–20210.

[137]

Mikhaylov, R. V.; Lisachenko, A. A.; Shelimov, B. N.; Kazansky, V. B.; Martra, G.; Coluccia, S. FTIR and TPD study of the room temperature interaction of a NO-oxygen mixture and of NO2 with titanium dioxide. J. Phys. Chem. C 2013, 117, 10345–10352.

[138]

Huang, Y.; Liang, Y. L.; Rao, Y. F.; Zhu, D. D.; Cao, J. J.; Shen, Z. X.; Ho, W.; Lee, S. C. Environment-friendly carbon quantum dots/ZnFe2O4 photocatalysts: Characterization, biocompatibility, and mechanisms for NO removal. Environ. Sci. Technol. 2017, 51, 2924–2933.

[139]

Zhang, Q.; Shi, Y. Y.; Shi, X. J.; Huang, T. T.; Lee, S.; Huang, Y.; Cao, J. J. Constructing Pd/ferroelectric Bi4Ti3O12 nanoflake interfaces for O2 activation and boosting NO photo-oxidation. Appl. Catal. B Environ. 2022, 302, 120876.

[140]

Li, H.; Shang, H.; Cao, X. M.; Yang, Z. P.; Ai, Z. H.; Zhang, L. Z. Oxygen vacancies mediated complete visible light NO oxidation via side-on bridging superoxide radicals. Environ. Sci. Technol. 2018, 52, 8659–8665.

[141]

Huo, W. C.; Xu, W. N.; Cao, T.; Liu, X. Y.; Zhang, Y. X.; Dong, F. Carbonate-intercalated defective bismuth tungstate for efficiently photocatalytic NO removal and promotion mechanism study. Appl. Catal. B Environ. 2019, 254, 206–213.

[142]

Cao, J. W.; Zhang, J. Y.; Dong, X. A.; Fu, H. L.; Zhang, X. M.; Lv, X. S.; Li, Y. H.; Jiang, G. M. Defective borate-decorated polymer carbon nitride: Enhanced photocatalytic NO removal, synergy effect and reaction pathway. Appl. Catal. B Environ. 2019, 249, 266–274.

[143]

Li, H.; Shang, H.; Li, Y. H.; Cao, X. M.; Yang, Z. P.; Ai, Z. H.; Zhang, L. Z. Interfacial charging-decharging strategy for efficient and selective aerobic NO oxidation on oxygen vacancy. Environ. Sci. Technol. 2019, 53, 6964–6971.

[144]

Lu, Y. F.; Huang, Y.; Zhang, Y. F.; Huang, T. T.; Li, H. W.; Cao, J. J.; Ho, W. Effects of H2O2 generation over visible light-responsive Bi/Bi2O2-xCO3 nanosheets on their photocatalytic NOx removal performance. Chem. Eng. J. 2019, 363, 374–382.

[145]

Lu, Y. F.; Huang, Y.; Zhang, Y. F.; Cao, J. J.; Li, H. W.; Bian, C.; Lee, S. C. Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal. Appl. Catal. B Environ. 2018, 231, 357–367.

[146]

Li, Q.; Zhao, J. J.; Shang, H.; Ma, Z.; Cao, H. Y.; Zhou, Y.; Li, G. S.; Zhang, D. Q.; Li, H. X. Singlet oxygen and mobile hydroxyl radicals co-operating on gas-solid catalytic reaction interfaces for deeply oxidizing NOx. Environ. Sci. Technol. 2022, 56, 5830–5839.

[147]

Shi, Y. B.; Yang, Z. P.; Shi, L. J.; Li, H.; Liu, X. P.; Zhang, X.; Cheng, J. D.; Liang, C.; Cao, S. Y.; Guo, F. R. et al. Surface boronizing can weaken the excitonic effects of BiOBr nanosheets for efficient O2 activation and selective NO oxidation under visible light irradiation. Environ. Sci. Technol. 2022, 56, 14478–14486.

[148]

Shang, H.; Huang, S.; Li, H.; Li, M. Q.; Zhao, S. X.; Wang, J. X.; Ai, Z. H.; Zhang, L. Z. Dual-site activation enhanced photocatalytic removal of NO with Au/CeO2. Chem. Eng. J. 2020, 386, 124047.

[149]

Li, J. Y.; Dong, X. A.; Sun, Y. J.; Jiang, G. M.; Chu, Y. H.; Lee, S. C.; Dong, F. Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning. Appl Catal. B Environ. 2018, 239, 187–195.

[150]

Song, X. J.; Qin, G. D.; Cheng, G.; Jiang, W. J.; Chen, X.; Dai, W. X.; Fu, X. Z. Oxygen defect-induced NO- intermediates promoting NO deep oxidation over Ce doped SnO2 under visible light. Appl. Catal. B Environ. 2021, 284, 119761.

[151]

Cui, W.; Li, J. Y.; Dong, F.; Sun, Y. J.; Jiang, G. M.; Cen, W. L.; Lee, S. C.; Wu, Z. B. Highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters@amorphous carbon nitride. Environ. Sci. Technol. 2017, 51, 10682–10690.

[152]

Maggos, T.; Bartzis, J. G.; Liakou, M.; Gobin, C. Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J. Hazard. Mater. 2007, 146, 668–673.

[153]

Chen, M.; Chu, J. W. NOx photocatalytic degradation on active concrete road surface-from experiment to real-scale application. J. Cleaner Prod. 2011, 19, 1266–1272.

[154]

Huang, Y.; Zhang, J.; Wang, Z. Y.; Liu, Y.; Wang, P. G.; Cao, J. J.; Ho, W. g-C3N4/TiO2 composite film in the fabrication of a photocatalytic air-purifying pavements. Sol. RRL 2020, 4, 2000170.

[155]

Banerjee, S.; Dionysiou, D. D.; Pillai, S. C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B Environ. 2015, 176–177, 396–428.

[156]

Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibañez, P.; Di Somma, I. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Catal. B Environ. 2015, 170–171, 90–123.

[157]

Bai, C. L. Ascent of nanoscience in China. Science 2005, 309, 61–63.

[158]

Chen, H. H.; Nanayakkara, C. E.; Grassian, V. H. Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 2012, 112, 5919–5948.

[159]

Xiao, S. N.; Wan, Z.; Zhou, J. C.; Li, H.; Zhang, H. Q.; Su, C. L.; Chen, W.; Li, G. S.; Zhang, D. Q.; Li, H. X. Gas-phase photoelectrocatalysis for breaking down nitric oxide. Environ. Sci. Technol. 2019, 53, 7145–7154.

[160]

Dai, W. R.; Tao, Y.; Zou, H. J.; Xiao, S. N.; Li, G. S.; Zhang, D. Q.; Li, H. X. Gas-phase photoelectrocatalytic oxidation of NO via TiO2 nanorod array/FTO photoanodes. Environ. Sci. Technol. 2020, 54, 5902–5912.

[161]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

[162]

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

[163]

Wang, D. D.; Chen, Z. W.; Gu, K. Z.; Chen, C.; Liu, Y. Y.; Wei, X. X.; Singh, C. V.; Wang, S. Y. Hexagonal cobalt nanosheets for high-performance electrocatalytic NO reduction to NH3. J. Am. Chem. Soc. 2023, 145, 6899–6904.

Nano Research
Pages 1003-1026
Cite this article:
Shang H, Jia H, Li P, et al. Highly selective and efficient photocatalytic NO removal: Charge carrier kinetics and interface molecular process. Nano Research, 2024, 17(3): 1003-1026. https://doi.org/10.1007/s12274-023-6014-2
Topics:

1125

Views

13

Crossref

12

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 10 June 2023
Revised: 12 July 2023
Accepted: 16 July 2023
Published: 11 September 2023
© Tsinghua University Press 2023
Return