Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Atomically thin Pt nanolayers were synthesized on the surface of Mo2TiC2 MXenes and used for the catalytic dehydrogenation of ethane and propane into ethylene and propylene, two important chemicals for the petrochemical industry. As compared with Pt nanoparticles, the atomically thin Pt nanolayer catalyst showed superior coke-resistance (no deactivation for 24 h), high activity (turnover frequencies (TOFs) of 0.4–1.2 s−1), and selectivity (> 95%) toward ethylene and propylene. The unique Pt nanolayer has a similar geometric surface to Pt nanoparticles, enabling the investigations of the electronic effect on the catalytic performance, where the geometric effect is negligible. It is found that the electronic effect plays a critical role in dehydrogenative product selectivity and catalyst stability. The metal–support interaction is found dependent on the substrate and metal components, providing wide opportunities to explore high-performance MXene-supported metallic catalysts.
Sattler, J. J. H. B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613–10653.
Ye, G. H.; Wang, H. Z.; Duan, X. Z.; Sui, Z.; Zhou, X. G.; Coppens, M. O.; Yuan, W. K. Pore network modeling of catalyst deactivation by coking, from single site to particle, during propane dehydrogenation. AIChE J. 2019, 65, 140–150.
Aly, M.; Fornero, E. L.; Leon-Garzon, A. R.; Galvita, V. V.; Saeys, M. Effect of boron promotion on coke formation during propane dehydrogenation over Pt/γ-Al2O3 catalysts. ACS Catal. 2020, 10, 5208–5216.
Lian, Z.; Si, C. W.; Jan, F.; Zhi, S. K.; Li, B. Coke Deposition on Pt-based catalysts in propane direct dehydrogenation: Kinetics, suppression, and elimination. ACS Catal. 2021, 11, 9279–9292.
Zhang, Y.; Wang, B. J.; Fan, M. H.; Ling, L. X.; Zhang, R. G. Ethane dehydrogenation over the g-C3N4 supported metal single-atom catalysts to enhance reactivity and coking-resistance ability. Nano Res. 2023, 16, 6142–6152.
Thakur, R.; VahidMohammadi, A.; Smith, J.; Hoffman, M.; Moncada, J.; Beidaghi, M.; Carrero, C. A. Insights into the genesis of a selective and coke-resistant MXene-based catalyst for the dry reforming of methane. ACS Catal. 2020, 10, 5124–5134.
Li, Y. Y.; Zhang, Y. S.; Qian, K.; Huang, W. X. Metal–support interactions in metal/oxide catalysts and oxide-metal interactions in oxide/metal inverse catalysts. ACS Catal. 2022, 12, 1268–1287.
Pu, T. C.; Zhang, W. H.; Zhu, M. H. Engineering heterogeneous catalysis with strong metal–support interactions: Characterization, theory and manipulation. Angew. Chem., Int. Ed. 2023, 62, e202212278.
Gao, X. F.; Xu, W. H.; Li, X.; Cen, J. J.; Xu, Y. Z.; Lin, L. L.; Yao, S. Y. Nonxidative dehydrogenation of propane to propene over Pt-Sn/Al2O3 catalysts: Identification of the nature of active site. Chem. Eng. J. 2022, 443, 136393.
Chen, X. W.; Peng, M.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed metal clusters: Fabrication and application in alkane dehydrogenation. ACS Catal. 2022, 12, 12720–12743.
Zhang, W.; Wang, H. Z.; Jiang, J. W.; Sui, Z.; Zhu, Y. A.; Chen, D.; Zhou, X. G. Size dependence of Pt catalysts for propane dehydrogenation: From atomically dispersed to nanoparticles. ACS Catal. 2020, 10, 12932–12942.
Motagamwala, A. H.; Almallahi, R.; Wortman, J.; Igenegbai, V. O.; Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 2021, 373, 217–222.
Hook, A.; Celik, F. E. Predicting selectivity for ethane dehydrogenation and coke formation pathways over model Pt-M surface alloys with ab initio and scaling methods. J. Phys. Chem. C 2017, 121, 17882–17892.
Weisz, P. B.; Prater, C. D. Interpretation of measurements in experimental catalysis. Adv. Catal. 1954, 6, 143–196.
Mears, D. E. Diagnostic criteria for heat transport limitations in fixed bed reactors. J. Catal. 1971, 20, 127–131.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computat. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.
Li, Z.; Cui, Y. R.; Wu, Z. W.; Milligan, C.; Zhou, L.; Mitchell, G.; Xu, B.; Shi, E. Z.; Miller, J. T.; Ribeiro, F. H. et al. Reactive Metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 2018, 1, 349–355.
Li, Z.; Xiao, Y.; Chowdhury, P. R.; Wu, Z. W.; Ma, T.; Chen, J. Z.; Wan, G.; Kim, T. H.; Jing, D. P.; He, P. L. et al. Direct methane activation by atomically thin platinum nanolayers on two-dimensional metal carbides. Nat. Catal. 2021, 4, 882–891.
Li, Z.; Yu, L.; Milligan, C.; Ma, T.; Zhou, L.; Cui, Y. R.; Qi, Z. Y.; Libretto, N.; Xu, B.; Luo, J. W. et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun. 2018, 9, 5258.
Xiao, Y.; Varma, A. Highly selective nonoxidative coupling of methane over Pt-Bi bimetallic catalysts. ACS Catal. 2018, 8, 2735–2740.
Frash, M. V.; Van Santen, R. A. Activation of small alkanes in Ga-exchanged zeolites: A quantum chemical study of ethane dehydrogenation. J. Phys. Chem. A 2000, 104, 2468–2475.
Li, Q.; Sui, Z. J.; Zhou, X. G.; Chen, D. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3 catalyst. Appl. Catal. A General 2011, 398, 18–26.
Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L. B.; Bollinger, M.; Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M. et al. Universality in heterogeneous catalysis. J. Catal. 2002, 209, 275–278.