AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrochemical converting ethanol to hydrogen and acetic acid for large scale green hydrogen production

Yufeng Zhang1,2Wei Zhu1 ( )Jinjie Fang1Zhiyuan Xu1Yanrong Xue1Jiajing Pei1Rui Sui1Xingdong Wang1Xuejiang Zhang1Zhongbin Zhuang1,3 ( )
State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

An electrochemical hydrogen and chemical cogeneration (EHCC) electrolyzer is fabricated using the developed AuCu catalysts as the anode to demonstrate the scalable technical approach of hydrogen and acetic acid cogeneration from ethanol.

Abstract

Electrochemical coupling hydrogen evolution with biomass reforming reaction (named electrochemical hydrogen and chemical cogeneration (EHCC)), which realizes green hydrogen production and chemical upgrading simultaneously, is a promising method to build a carbon-neutral society. Herein, we analyze the EHCC process by considering the market assessment. The ethanol to acetic acid and hydrogen approach is the most feasible for large-scale hydrogen production. We develop AuCu nanocatalysts, which can selectively oxidize ethanol to acetic acid (> 97%) with high long-term activity. The isotopic and in-situ infrared experiments reveal that the promoted water dissociation step by alloying contributes to the enhanced activity of the partial oxidation reaction path. A flow-cell electrolyzer equipped with the AuCu anodic catalyst achieves the steady production of hydrogen and acetic acid simultaneously in both high selectivity (> 90%), demonstrating the potential scalable application for green hydrogen production with low energy consumption and high profitability.

Electronic Supplementary Material

Download File(s)
12274_2023_6023_MOESM1_ESM.pdf (4.7 MB)

References

[1]

Muradov, N. Z.; Veziroğlu, T. N. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy 2008, 33, 6804–6839.

[2]

Schoedel, A.; Ji, Z.; Yaghi, O. M. The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat. Energy 2016, 1, 16034.

[3]

Wu, Q. K.; Li, H.; Zhou, Y.; Lv, S. S.; Chen, T. Y.; Liu, S. H.; Li, W. Y.; Chen, Z. Convenient synthesis of a Ru catalyst containing single atoms and nanoparticles on nitrogen-doped carbon with superior hydrogen evolution reaction activity in a wide pH range. Inorg. Chem. 2022, 61, 11011–11021.

[4]

Wang, S. R.; Wang, M. M.; Liu, Z.; Liu, S. J.; Chen, Y. J.; Li, M.; Zhang, H.; Wu, Q. K.; Guo, J. H.; Feng, X. Q. et al. Synergetic function of the single-atom Ru-N4 site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis. ACS Appl. Mater. Interfaces 2022, 14, 15250–15258.

[5]

Maurya, D. P.; Singla, A.; Negi, S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015, 5, 597–609.

[6]

Puigjaner, L.; Pérez-Fortes, M.; Laínez-Aguirre, J. M. Towards a carbon-neutral energy sector: Opportunities and challenges of coordinated bioenergy supply chains-A PSE approach. Energies 2015, 8, 5613–5660.

[7]

Show, K. Y.; Yan, Y. G.; Ling, M.; Ye, G. X.; Li, T.; Lee, D. J. Hydrogen production from algal biomass—Advances, challenges and prospects. Bioresour. Technol. 2018, 257, 290–300.

[8]

Ge, R. X.; Li, J.; Duan, H. H. Recent advances in non-noble electrocatalysts for oxidative valorization of biomass derivatives. Sci. China Mater. 2022, 65, 3273–3301.

[9]

Chen, L. S.; Shi, J. L. Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER). J. Mater. Chem. A 2018, 6, 13538–13548.

[10]

Liu, F. L.; Gao, X. T.; Shi, R.; Guo, Z. X.; Tse, E. C. M.; Chen, Y. Concerted and selective electrooxidation of polyethylene-terephthalate-derived alcohol to glycolic acid at an industry-level current density over a Pd-Ni(OH)2 catalyst. Angew. Chem., Int. Ed. 2023, 62, e202300094.

[11]

Wu, Q. K.; Wang, S. R.; Guo, J. H.; Feng, X. Q.; Li, H.; Lv, S. S.; Zhou, Y.; Chen, Z. Insight into sulfur and iron effect of binary nickel-iron sulfide on oxygen evolution reaction. Nano Res. 2022, 15, 1901–1908.

[12]

Sun, H. Q.; Zhao, M. Q.; Ma, C.; Chen, W.; Yang, Y.; Han, Y. H. Construction of ultra-stable NiFe armored catalyst for liquid and flexible quasi-solid-state rechargeable Zn-air batteries. Nano Res. 2023, 16, 4980–4986.

[13]

Wu, Q. K.; Yang, W. J.; Wang, X. D.; Zhu, W.; Lv, S. S.; Zhou, Y.; Chen, T. Y.; Liu, S. H.; Li, W. Y.; Chen, Z. Inherent vacancy of compressive Ru nanoparticles accelerate electro-catalytic hydrogen energy conversion. Appl. Catal. B: Environ. 2023, 335, 122896.

[14]

Huang, H. L.; Yu, C.; Han, X. T.; Huang, H. W.; Wei, Q. B.; Guo, W.; Wang, Z.; Qiu, J. S. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA·cm−2. Energy Environ. Sci. 2020, 13, 4990–4999.

[15]

Li, Z. H.; Yan, Y. F.; Xu, S. M.; Zhou, H.; Xu, M.; Ma, L. N.; Shao, M. F.; Kong, X. G.; Wang, B.; Zheng, L. R. et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst. Nat. Commun. 2022, 13, 147.

[16]

González-Cobos, J.; Baranton, S.; Coutanceau, C. Development of bismuth-modified PtPd nanocatalysts for the electrochemical reforming of polyols into hydrogen and value-added chemicals. ChemElectroChem 2016, 3, 1694–1704.

[17]

Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C. Y. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst-CuO. Appl. Catal. B: Environ. 2020, 265, 118543.

[18]

Vo, T. G.; Tran, G. S.; Chiang, C. L.; Lin, Y. G.; Chang, H. E.; Kuo, H. H.; Chiang, C. Y.; Hsu, Y. J. Au@NiSx yolk@shell nanostructures as dual-functional electrocatalysts for concomitant production of value-added tartronic acid and hydrogen fuel. Adv. Funct. Mater. 2023, 33, 2209386.

[19]

Chen, J. Y.; Xu, Q.; Shu, Y.; Hu, X. Y. Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum. Talanta 2018, 184, 136–142.

[20]

Du, P. Y.; Zhang, J. J.; Liu, Y. H.; Huang, M. H. Hydrogen generation from catalytic glucose oxidation by Fe-based electrocatalysts. Electrochem. Commun. 2017, 83, 11–15.

[21]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

[22]

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

[23]
IEA. Global Hydrogen Review 2022 [Online]. IEA: Paris, 2022. https://www.iea.org/reports/global-hydrogen-review-2022 (accessed Jan 19, 2023).
[24]

Balat, M.; Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86, 2273–2282.

[25]

Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M. F.; Lidén, G.; Zacchi, G. Bio-ethanol—The fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24, 549–556.

[26]

Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem., Int. Ed. 2010, 49, 2917–2921.

[27]

Na, J.; Seo, B.; Kim, J.; Lee, C. W.; Lee, H.; Hwang, Y. J.; Min, B. K.; Lee, D. K.; Oh, H. S.; Lee, U. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nat. Commun. 2019, 10, 5193.

[28]

Dagle, R. A.; Winkelman, A. D.; Ramasamy, K. K.; Dagle, V. L.; Weber, R. S. Ethanol as a renewable building block for fuels and chemicals. Ind. Eng. Chem. Res. 2020, 59, 4843–4853.

[29]

Hann, E. C.; Overa, S.; Harland-Dunaway, M.; Narvaez, A. F.; Le, D. N.; Orozco-Cárdenas, M. L.; Jiao, F.; Jinkerson, R. E. A hybrid inorganic-biological artificial photosynthesis system for energy-efficient food production. Nat. Food 2022, 3, 461–471.

[30]

Bai, J.; Liu, D. Y.; Yang, J.; Chen, Y. Nanocatalysts for electrocatalytic oxidation of ethanol. ChemSusChem 2019, 12, 2117–2132.

[31]

Wang, Y.; Zou, S. Z.; Cai, W. B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5, 1507–1534.

[32]

Zheng, Y.; Wan, X. J.; Cheng, X.; Cheng, K.; Dai, Z. F.; Liu, Z. H. Advanced catalytic materials for ethanol oxidation in direct ethanol fuel cells. Catalysts 2020, 10, 166.

[33]

Li, D. G.; Wang, C.; Tripkovic, D.; Sun, S. H.; Markovic, N. M.; Stamenkovic, V. R. Surfactant removal for colloidal nanoparticles from solution synthesis: The effect on catalytic performance. ACS Catal. 2012, 2, 1358–1362.

[34]

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 2003, 301, 935–938.

[35]

Wei, C.; Rao, R. R.; Peng, J. Y.; Huang, B. T.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 2019, 31, 1806296.

[36]

Liu, Y. M.; Sheng, S. X.; Wu, M.; Wang, S.; Wang, Y. X.; Yang, H. Y.; Chen, J. H.; Hao, X. Y.; Zhi, C.; Wang, Y. Z. et al. Controllable synthesis of PtIrCu ternary alloy ultrathin nanowires for enhanced ethanol electrooxidation. ACS Appl. Mater. Interfaces 2023, 15, 3934–3940.

[37]

de Lima, R. B.; Varela, H. Catalytic oxidation of ethanol on gold electrode in alkaline media. Gold Bull. 2008, 41, 15–22.

[38]

Kwon, Y.; Lai, S. C. S.; Rodriguez, P.; Koper, M. T. M. Electrocatalytic oxidation of alcohols on gold in alkaline media: Base or gold catalysis. . J. Am. Chem. Soc. 2011, 133, 6914–6917.

[39]

Ren, J.; Yang, Y. Y.; Zhang, B. W.; Tian, N.; Cai, W. B.; Zhou, Z. Y.; Sun, S. G. H-D kinetic isotope effects of alcohol electrooxidation on Au, Pd and Pt electrodes in alkaline solutions. Electrochem. Commun. 2013, 37, 49–52.

[40]

Zhu, C.; Lan, B.; Wei, R. L.; Wang, C. N.; Yang, Y. Y. Potential-dependent selectivity of ethanol complete oxidation on Rh electrode in alkaline media: A synergistic study of electrochemical ATR-SEIRAS and IRAS. ACS Catal. 2019, 9, 4046–4053.

[41]

Cuña, A.; Reyes Plascencia, C.; da Silva, E. L., Marcuzzo, J.; Khan, S.; Tancredi, N.; Baldan, M. R.; de Fraga Malfatti, C. Electrochemical and spectroelectrochemical analyses of hydrothermal carbon supported nickel electrocatalyst for ethanol electro-oxidation in alkaline medium. Appl. Catal. B: Environ. 2017, 202, 95–103.

[42]

Heinen, M.; Jusys, Z.; Behm, R. J. Ethanol, acetaldehyde and acetic acid adsorption/electrooxidation on a Pt thin film electrode under continuous electrolyte flow: An in situ ATR-FTIRS flow cell study. J. Phys. Chem. C 2010, 114, 9850–9864.

[43]

Zhu, W.; Ke, J.; Wang, S. B.; Ren, J.; Wang, H. H.; Zhou, Z. Y.; Si, R.; Zhang, Y. W.; Yan, C. H. Shaping single-crystalline trimetallic Pt-Pd-Rh nanocrystals toward high-efficiency C–C splitting of ethanol in conversion to CO2. ACS Catal. 2015, 5, 1995–2008.

[44]

Zhang, J. W.; Ye, J. Y.; Fan, Q. Y.; Jiang, Y. T.; Zhu, Y. F.; Li, H. Q.; Cao, Z. M.; Kuang, Q.; Cheng, J.; Zheng, J. et al. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation. J. Am. Chem. Soc. 2018, 140, 11232–11240.

[45]

Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huang-Fu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

[46]

Tong, Y. J.; Lapointe, F.; Thämer, M.; Wolf, M.; Campen, R. K. Hydrophobic water probed experimentally at the gold electrode/aqueous interface. Angew. Chem., Int. Ed. 2017, 56, 4211–4214.

[47]

Li, X. Y.; Chen, A.; Yang, X. H.; Zhu, J. X.; Le, J. B.; Cheng, J. Linear correlation between water adsorption energies and Volta potential differences for metal/water interfaces. J. Phys. Chem. Lett. 2021, 12, 7299–7304.

[48]

Zhou, C. A.; Wang, S. H.; Ma, K.; Song, L.; Zheng, L. R.; Yue, H. R. Membrane-free pure H2 production over single dispersed Ru-anchored Pt3Ni alloys via coupling ethanol selective electrooxidation. Appl. Catal. B: Environ. 2023, 321, 122065.

[49]

Sun, K. Q.; Luo, S. W.; Xu, N.; Xu, B. Q. Gold nano-size effect in Au/SiO2 for selective ethanol oxidation in aqueous solution. Catal. Lett. 2008, 124, 238–242.

[50]

Mostrou, S.; Nagl, A.; Ranocchiari, M.; Föttinger, K.; van Bokhoven, J. A. The catalytic and radical mechanism for ethanol oxidation to acetic acid. Chem. Commun. 2019, 55, 11833–11836.

[51]

Tembe, S. M.; Patrick, G.; Scurrell, M. S. Acetic acid production by selective oxidation of ethanol using Au catalysts supported on various metal oxide. Gold Bull. 2009, 42, 321–327.

[52]

Dong, W. W.; Reichenberger, S.; Chu, S.; Weide, P.; Ruland, H.; Barcikowski, S.; Wagener, P.; Muhler, M. The effect of the Au loading on the liquid-phase aerobic oxidation of ethanol over Au/TiO2 catalysts prepared by pulsed laser ablation. J. Catal. 2015, 330, 497–506.

[53]

Jørgensen, B.; Christiansen, S. E.; Thomsen, M. L. D.; Christensen, C. H. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate. J. Catal. 2007, 251, 332–337.

[54]

Chen, G. F.; Luo, Y. R.; Ding, L. X.; Wang, H. H. Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal. 2018, 8, 526–530.

Nano Research
Pages 1542-1551
Cite this article:
Zhang Y, Zhu W, Fang J, et al. Electrochemical converting ethanol to hydrogen and acetic acid for large scale green hydrogen production. Nano Research, 2024, 17(3): 1542-1551. https://doi.org/10.1007/s12274-023-6023-1
Topics:

857

Views

9

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 08 June 2023
Revised: 16 July 2023
Accepted: 19 July 2023
Published: 12 August 2023
© Tsinghua University Press 2023
Return