Electrochemical coupling hydrogen evolution with biomass reforming reaction (named electrochemical hydrogen and chemical cogeneration (EHCC)), which realizes green hydrogen production and chemical upgrading simultaneously, is a promising method to build a carbon-neutral society. Herein, we analyze the EHCC process by considering the market assessment. The ethanol to acetic acid and hydrogen approach is the most feasible for large-scale hydrogen production. We develop AuCu nanocatalysts, which can selectively oxidize ethanol to acetic acid (> 97%) with high long-term activity. The isotopic and in-situ infrared experiments reveal that the promoted water dissociation step by alloying contributes to the enhanced activity of the partial oxidation reaction path. A flow-cell electrolyzer equipped with the AuCu anodic catalyst achieves the steady production of hydrogen and acetic acid simultaneously in both high selectivity (> 90%), demonstrating the potential scalable application for green hydrogen production with low energy consumption and high profitability.
Muradov, N. Z.; Veziroğlu, T. N. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy 2008, 33, 6804–6839.
Schoedel, A.; Ji, Z.; Yaghi, O. M. The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat. Energy 2016, 1, 16034.
Wu, Q. K.; Li, H.; Zhou, Y.; Lv, S. S.; Chen, T. Y.; Liu, S. H.; Li, W. Y.; Chen, Z. Convenient synthesis of a Ru catalyst containing single atoms and nanoparticles on nitrogen-doped carbon with superior hydrogen evolution reaction activity in a wide pH range. Inorg. Chem. 2022, 61, 11011–11021.
Wang, S. R.; Wang, M. M.; Liu, Z.; Liu, S. J.; Chen, Y. J.; Li, M.; Zhang, H.; Wu, Q. K.; Guo, J. H.; Feng, X. Q. et al. Synergetic function of the single-atom Ru-N4 site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis. ACS Appl. Mater. Interfaces 2022, 14, 15250–15258.
Maurya, D. P.; Singla, A.; Negi, S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015, 5, 597–609.
Puigjaner, L.; Pérez-Fortes, M.; Laínez-Aguirre, J. M. Towards a carbon-neutral energy sector: Opportunities and challenges of coordinated bioenergy supply chains-A PSE approach. Energies 2015, 8, 5613–5660.
Show, K. Y.; Yan, Y. G.; Ling, M.; Ye, G. X.; Li, T.; Lee, D. J. Hydrogen production from algal biomass—Advances, challenges and prospects. Bioresour. Technol. 2018, 257, 290–300.
Ge, R. X.; Li, J.; Duan, H. H. Recent advances in non-noble electrocatalysts for oxidative valorization of biomass derivatives. Sci. China Mater. 2022, 65, 3273–3301.
Chen, L. S.; Shi, J. L. Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER). J. Mater. Chem. A 2018, 6, 13538–13548.
Liu, F. L.; Gao, X. T.; Shi, R.; Guo, Z. X.; Tse, E. C. M.; Chen, Y. Concerted and selective electrooxidation of polyethylene-terephthalate-derived alcohol to glycolic acid at an industry-level current density over a Pd-Ni(OH)2 catalyst. Angew. Chem., Int. Ed. 2023, 62, e202300094.
Wu, Q. K.; Wang, S. R.; Guo, J. H.; Feng, X. Q.; Li, H.; Lv, S. S.; Zhou, Y.; Chen, Z. Insight into sulfur and iron effect of binary nickel-iron sulfide on oxygen evolution reaction. Nano Res. 2022, 15, 1901–1908.
Sun, H. Q.; Zhao, M. Q.; Ma, C.; Chen, W.; Yang, Y.; Han, Y. H. Construction of ultra-stable NiFe armored catalyst for liquid and flexible quasi-solid-state rechargeable Zn-air batteries. Nano Res. 2023, 16, 4980–4986.
Wu, Q. K.; Yang, W. J.; Wang, X. D.; Zhu, W.; Lv, S. S.; Zhou, Y.; Chen, T. Y.; Liu, S. H.; Li, W. Y.; Chen, Z. Inherent vacancy of compressive Ru nanoparticles accelerate electro-catalytic hydrogen energy conversion. Appl. Catal. B: Environ. 2023, 335, 122896.
Huang, H. L.; Yu, C.; Han, X. T.; Huang, H. W.; Wei, Q. B.; Guo, W.; Wang, Z.; Qiu, J. S. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA·cm−2. Energy Environ. Sci. 2020, 13, 4990–4999.
Li, Z. H.; Yan, Y. F.; Xu, S. M.; Zhou, H.; Xu, M.; Ma, L. N.; Shao, M. F.; Kong, X. G.; Wang, B.; Zheng, L. R. et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst. Nat. Commun. 2022, 13, 147.
González-Cobos, J.; Baranton, S.; Coutanceau, C. Development of bismuth-modified PtPd nanocatalysts for the electrochemical reforming of polyols into hydrogen and value-added chemicals. ChemElectroChem 2016, 3, 1694–1704.
Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C. Y. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst-CuO. Appl. Catal. B: Environ. 2020, 265, 118543.
Vo, T. G.; Tran, G. S.; Chiang, C. L.; Lin, Y. G.; Chang, H. E.; Kuo, H. H.; Chiang, C. Y.; Hsu, Y. J. Au@NiSx yolk@shell nanostructures as dual-functional electrocatalysts for concomitant production of value-added tartronic acid and hydrogen fuel. Adv. Funct. Mater. 2023, 33, 2209386.
Chen, J. Y.; Xu, Q.; Shu, Y.; Hu, X. Y. Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum. Talanta 2018, 184, 136–142.
Du, P. Y.; Zhang, J. J.; Liu, Y. H.; Huang, M. H. Hydrogen generation from catalytic glucose oxidation by Fe-based electrocatalysts. Electrochem. Commun. 2017, 83, 11–15.
Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.
You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.
Balat, M.; Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86, 2273–2282.
Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M. F.; Lidén, G.; Zacchi, G. Bio-ethanol—The fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24, 549–556.
Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem., Int. Ed. 2010, 49, 2917–2921.
Na, J.; Seo, B.; Kim, J.; Lee, C. W.; Lee, H.; Hwang, Y. J.; Min, B. K.; Lee, D. K.; Oh, H. S.; Lee, U. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nat. Commun. 2019, 10, 5193.
Dagle, R. A.; Winkelman, A. D.; Ramasamy, K. K.; Dagle, V. L.; Weber, R. S. Ethanol as a renewable building block for fuels and chemicals. Ind. Eng. Chem. Res. 2020, 59, 4843–4853.
Hann, E. C.; Overa, S.; Harland-Dunaway, M.; Narvaez, A. F.; Le, D. N.; Orozco-Cárdenas, M. L.; Jiao, F.; Jinkerson, R. E. A hybrid inorganic-biological artificial photosynthesis system for energy-efficient food production. Nat. Food 2022, 3, 461–471.
Bai, J.; Liu, D. Y.; Yang, J.; Chen, Y. Nanocatalysts for electrocatalytic oxidation of ethanol. ChemSusChem 2019, 12, 2117–2132.
Wang, Y.; Zou, S. Z.; Cai, W. B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5, 1507–1534.
Zheng, Y.; Wan, X. J.; Cheng, X.; Cheng, K.; Dai, Z. F.; Liu, Z. H. Advanced catalytic materials for ethanol oxidation in direct ethanol fuel cells. Catalysts 2020, 10, 166.
Li, D. G.; Wang, C.; Tripkovic, D.; Sun, S. H.; Markovic, N. M.; Stamenkovic, V. R. Surfactant removal for colloidal nanoparticles from solution synthesis: The effect on catalytic performance. ACS Catal. 2012, 2, 1358–1362.
Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 2003, 301, 935–938.
Wei, C.; Rao, R. R.; Peng, J. Y.; Huang, B. T.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 2019, 31, 1806296.
Liu, Y. M.; Sheng, S. X.; Wu, M.; Wang, S.; Wang, Y. X.; Yang, H. Y.; Chen, J. H.; Hao, X. Y.; Zhi, C.; Wang, Y. Z. et al. Controllable synthesis of PtIrCu ternary alloy ultrathin nanowires for enhanced ethanol electrooxidation. ACS Appl. Mater. Interfaces 2023, 15, 3934–3940.
de Lima, R. B.; Varela, H. Catalytic oxidation of ethanol on gold electrode in alkaline media. Gold Bull. 2008, 41, 15–22.
Kwon, Y.; Lai, S. C. S.; Rodriguez, P.; Koper, M. T. M. Electrocatalytic oxidation of alcohols on gold in alkaline media: Base or gold catalysis. . J. Am. Chem. Soc. 2011, 133, 6914–6917.
Ren, J.; Yang, Y. Y.; Zhang, B. W.; Tian, N.; Cai, W. B.; Zhou, Z. Y.; Sun, S. G. H-D kinetic isotope effects of alcohol electrooxidation on Au, Pd and Pt electrodes in alkaline solutions. Electrochem. Commun. 2013, 37, 49–52.
Zhu, C.; Lan, B.; Wei, R. L.; Wang, C. N.; Yang, Y. Y. Potential-dependent selectivity of ethanol complete oxidation on Rh electrode in alkaline media: A synergistic study of electrochemical ATR-SEIRAS and IRAS. ACS Catal. 2019, 9, 4046–4053.
Cuña, A.; Reyes Plascencia, C.; da Silva, E. L., Marcuzzo, J.; Khan, S.; Tancredi, N.; Baldan, M. R.; de Fraga Malfatti, C. Electrochemical and spectroelectrochemical analyses of hydrothermal carbon supported nickel electrocatalyst for ethanol electro-oxidation in alkaline medium. Appl. Catal. B: Environ. 2017, 202, 95–103.
Heinen, M.; Jusys, Z.; Behm, R. J. Ethanol, acetaldehyde and acetic acid adsorption/electrooxidation on a Pt thin film electrode under continuous electrolyte flow: An in situ ATR-FTIRS flow cell study. J. Phys. Chem. C 2010, 114, 9850–9864.
Zhu, W.; Ke, J.; Wang, S. B.; Ren, J.; Wang, H. H.; Zhou, Z. Y.; Si, R.; Zhang, Y. W.; Yan, C. H. Shaping single-crystalline trimetallic Pt-Pd-Rh nanocrystals toward high-efficiency C–C splitting of ethanol in conversion to CO2. ACS Catal. 2015, 5, 1995–2008.
Zhang, J. W.; Ye, J. Y.; Fan, Q. Y.; Jiang, Y. T.; Zhu, Y. F.; Li, H. Q.; Cao, Z. M.; Kuang, Q.; Cheng, J.; Zheng, J. et al. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation. J. Am. Chem. Soc. 2018, 140, 11232–11240.
Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huang-Fu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.
Tong, Y. J.; Lapointe, F.; Thämer, M.; Wolf, M.; Campen, R. K. Hydrophobic water probed experimentally at the gold electrode/aqueous interface. Angew. Chem., Int. Ed. 2017, 56, 4211–4214.
Li, X. Y.; Chen, A.; Yang, X. H.; Zhu, J. X.; Le, J. B.; Cheng, J. Linear correlation between water adsorption energies and Volta potential differences for metal/water interfaces. J. Phys. Chem. Lett. 2021, 12, 7299–7304.
Zhou, C. A.; Wang, S. H.; Ma, K.; Song, L.; Zheng, L. R.; Yue, H. R. Membrane-free pure H2 production over single dispersed Ru-anchored Pt3Ni alloys via coupling ethanol selective electrooxidation. Appl. Catal. B: Environ. 2023, 321, 122065.
Sun, K. Q.; Luo, S. W.; Xu, N.; Xu, B. Q. Gold nano-size effect in Au/SiO2 for selective ethanol oxidation in aqueous solution. Catal. Lett. 2008, 124, 238–242.
Mostrou, S.; Nagl, A.; Ranocchiari, M.; Föttinger, K.; van Bokhoven, J. A. The catalytic and radical mechanism for ethanol oxidation to acetic acid. Chem. Commun. 2019, 55, 11833–11836.
Tembe, S. M.; Patrick, G.; Scurrell, M. S. Acetic acid production by selective oxidation of ethanol using Au catalysts supported on various metal oxide. Gold Bull. 2009, 42, 321–327.
Dong, W. W.; Reichenberger, S.; Chu, S.; Weide, P.; Ruland, H.; Barcikowski, S.; Wagener, P.; Muhler, M. The effect of the Au loading on the liquid-phase aerobic oxidation of ethanol over Au/TiO2 catalysts prepared by pulsed laser ablation. J. Catal. 2015, 330, 497–506.
Jørgensen, B.; Christiansen, S. E.; Thomsen, M. L. D.; Christensen, C. H. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate. J. Catal. 2007, 251, 332–337.
Chen, G. F.; Luo, Y. R.; Ding, L. X.; Wang, H. H. Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal. 2018, 8, 526–530.