AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fabrication of sub-20 nm MoS2 horizontal nanowire on silicon substrates by inclusion of precursors into polystyrene-b-polyethylene oxide nanopatterns: Detailed structural investigation

School of Chemistry, AMBER and CRANN, Trinity College Dublin, Dublin, Ireland, D02 AK60
Show Author Information

Graphical Abstract

Sub-20 nm single layered semiconductor two-dimensional (2D) MoS2 horizontal nanowire arrays on silicon substrates were fabricated using a self-assembled block copolymer assisted in situ inclusion approach.

Abstract

Herein, we demonstrate the fabrication of sub-20 nm MoS2 horizontal nanowire arrays on silicon substrates using a self-assembled block copolymer assisted in situ inclusion approach. Microphase separated long-range ordered polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer (BCP) line-space nanopatterns were achieved through thermo-solvent annealing. The patterns produced had long-range order and domain sizes > 1 μm. The BCP structures were lightly etched and modified by anhydrous ethanol to facilitate insertion of molybdenum precursor within the film maintaining the parent BCP arrangements. Horizontal ordered molybdenum oxide nanowire arrays were then fabricated by ultraviolet (UV)/ozone treatment at room temperature. The oxides were converted to sulphides by thermal evaporation at different temperatures in Ar/H2 environment. X-ray photoelectron spectroscopy revealed the composition and phases of the molybdenum oxide and sulphide nanowires. Elemental mapping was performed to investigate the interfaces between the oxide and sulphide nanowires with the substrate surface. The formation and stability of the sulphide nanowires were studied at different temperatures. The photoluminescence and Raman properties were studied at different formation temperatures to investigate defects and estimate the number of layers.

Electronic Supplementary Material

Download File(s)
12274_2023_6024_MOESM1_ESM.pdf (281.2 KB)

References

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

[2]

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

[3]

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

[4]

Lauritsen, J. V.; Kibsgaard, J.; Helveg, S.; Topsøe, H.; Clausen, B. S.; Lægsgaard, E.; Besenbacher, F. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2, 53–58.

[5]

Remskar, M.; Mrzel, A.; Skraba, Z.; Jesih, A.; Ceh, M.; Demsar, J.; Stadelmann, P.; Levy, F.; Mihailovic, D. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 2001, 292, 479–481.

[6]

Kim, H. C.; Park, S. M.; Hinsberg, W. D. Block copolymer based nanostructures: Materials, processes, and applications to electronics. Chem. Rev. 2010, 110, 146–177.

[7]

Mao, J.; Zhang, B. C.; Shi, Y. H.; Wu, X. F.; He, Y. Y.; Wu, D.; Jie, J. S.; Lee, C. S.; Zhang, X. H. Conformal MoS2/silicon nanowire array heterojunction with enhanced light trapping and effective interface passivation for ultraweak infrared light detection. Adv. Funct. Mater. 2022, 32, 2108174.

[8]

Mallikarjuna, K.; Shinde, M. A.; Kim, H. Electrochromic smart windows using 2D-MoS2 nanostructures protected silver nanowire based flexible transparent electrodes. Mater. Sci. Semicond. Process. 2020, 117, 105176.

[9]

Xiao, Y.; Zou, G. S.; Huo, J. P.; Sun, T. M.; Feng, B.; Liu, L. Locally thinned, core–shell nanowire-integrated multi-gate MoS2 transistors for active control of extendable logic. ACS Appl. Mater. Interfaces 2023, 15, 1563–1573.

[10]

Dieterle, G.; Mestl, M. Raman spectroscopy of molybdenum oxides. Phys. Chem. Chem. Phys. 2002, 4, 822–826.

[11]

Windom, B. C.; Sawyer, W. G.; Hahn, D. W. A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribol. Lett. 2011, 42, 301–310.

[12]

Zhang, Z. G.; Wang, X. X.; Zhang, J.; Yu, M.; Zhang, J. C.; Zhang, H. D.; Long, Y. Z. Recent advances in 1D micro- and nanoscale indium oxide structures. J. Alloys Compd. 2018, 752, 359–375.

[13]

Wang, D. W.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Res. 2008, 1, 9–21.

[14]

Cheng, J. Y.; Sanders, D. P.; Truong, H. D.; Harrer, S.; Friz, A.; Holmes, S.; Colburn, M.; Hinsberg, W. D. Simple and versatile methods to integrate directed self-assembly with optical lithography using a polarity-switched photoresist. ACS Nano 2010, 4, 4815–4823.

[15]
Bates, C. M.; Bates, F. S. 50th anniversary perspective: Block polymers-pure potential. Macromolecules 2017, 50, 3–22.
[16]

Gadelrab, K. R.; Hannon, A. F.; Ross, C. A.; Alexander-Katz, A. Inverting the design path for self-assembled block copolymers. Mol. Syst. Des. Eng. 2017, 2, 539–548.

[17]

Herr, D. J. C. Directed block copolymer self-assembly for nanoelectronics fabrication. J. Mater. Res. 2011, 26, 122–139.

[18]

Park, C.; Yoon, J.; Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44, 6725–6760.

[19]

Ghoshal, T.; Senthamaraikannan, R.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. “In situ” hard mask materials: A new methodology for creation of vertical silicon nanopillar and nanowire arrays. Nanoscale 2012, 4, 7743–7750.

[20]

Ghoshal, T.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. Development of a facile block copolymer method for creating hard mask patterns integrated into semiconductor manufacturing. Nano Res. 2016, 9, 3116–3128.

[21]

Rasappa, S.; Borah, D.; Faulkner, C. C.; Lutz, T.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. Fabrication of a sub-10 nm silicon nanowire based ethanol sensor using block copolymer lithography. Nanotechnology 2013, 24, 065503.

[22]

Chaudhari, A.; Ghoshal, T.; Shaw, M. T.; O’Connell, J.; Kelly, R. A.; Glynn, C.; O’Dwyer, C. Holmes, J. D.; Morris, M. A. Fabrication of MoS2 nanowire arrays and layered structures via the self-assembly of block copolymers. Adv. Mater. Interfaces 2016, 3, 1500596.

[23]

Mokarian-Tabari, P.; Collins, T. W.; Holmes, J. D.; Morris, M. A. Cyclical ‘flipping’ of morphology in block copolymer thin films. ACS Nano 2011, 5, 4617–4623.

[24]

Ghoshal, T.; Chaudhari, A.; Cummins, C.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. Morphological evolution of lamellar forming polystyrene-block-poly(4-vinylpyridine) copolymers under solvent annealing. Soft Matter 2016, 12, 5429–5437.

[25]

Mishra, V.; Fredrickson, G. H.; Kramer, E. J. Effect of film thickness and domain spacing on defect densities in directed self-assembly of cylindrical morphology block copolymers. ACS Nano 2012, 6, 2629–2641.

[26]

Zhang, X. H.; Berry, B. C.; Yager, K. G.; Kim, S.; Jones, R. L.; Satija, S.; Pickel, D. L.; Douglas, J. F.; Karim, A. Surface morphology diagram for cylinder-forming block copolymer thin films. ACS Nano 2008, 2, 2331–2341.

[27]

Ghoshal, T.; Senthamaraikannan, R.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. Fabrication of ordered, large scale, horizontally-aligned Si nanowire arrays based on an in situ hard mask block copolymer approach. Adv. Mater. 2014, 26, 1207–1216.

[28]

Ghoshal, T.; Shaw, M. T.; Bolger, C. T.; Holmes, J. D.; Morris, M. A. A general method for controlled nanopatterning of oxide dots: A microphase separated block copolymer platform. J. Mater. Chem. 2012, 22, 12083–12089.

[29]

Ghoshal, T.; Maity, T.; Senthamaraikannan, R.; Shaw, M. T.; Carolan, P.; Holmes, J. D.; Roy, S.; Morris, M. A. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: Magnetic studies and application. Sci. Rep. 2013, 3, 2772.

[30]

Ghoshal, T.; Maity, T.; Godsell, J. F.; Roy, S.; Morris, M. A. Large scale monodisperse hexagonal arrays of superparamagnetic iron oxides nanodots: A facile block copolymer inclusion method. Adv. Mater. 2012, 24, 2390–2397.

[31]

Giraud, E. C.; Mokarian-Tabari, P.; Toolan, D. T. W.; Arnold, T.; Smith, A. J.; Howse, J. R.; Topham, P. D.; Morris, M. A. Highly ordered titanium dioxide nanostructures via a simple one-step vapor-inclusion method in block copolymer films. ACS Appl. Nano Mater. 2018, 1, 3426–3434.

[32]

Ghoshal, T.; Ntaras, C.; Shaw, M. T.; Holmes, J. D.; Avgeropoulos, A.; Morris, M. A. A vertical lamellae arrangement of sub-16 nm pitch (domain spacing) in a microphase separated PS-b-PEO thin film by salt addition. J. Mater. Chem. C 2015, 3, 7216–7227.

[33]

Choi, J. G.; Thompson, L. T. XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 1996, 93, 143–149.

[34]

Ho, S. F.; Contarini, S.; Rabalais, J. W. Metallization channels in ion-induced decomposition of molybdates and niobates. Chem. Phys. Lett. 1987, 133, 171–175.

[35]

Fleisch, T. H.; Mains, G. J. An XPS study of the UV reduction and photochromism of MoO3 and WO3. J. Chem. Phys. 1982, 76, 780–786.

[36]

Vernickaitė, E.; Lelis, M.; Tsyntsaru, N.; Pakštas, V.; Cesiulis, H. XPS studies on the Mo oxide-based coatings electrodeposited from highly saturated acetate bath. Chemija 2020, 31, 203–209.

[37]

Syari’Ati, A.; Kumar, S.; Zahid, A.; Ali El Yumin, A.; Ye, J. T.; Rudolf, P. Photoemission spectroscopy study of structural defects in molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD). Chem. Commun. 2019, 55, 10384–10387.

[38]

Lee, Y.; Lee, J.; Bark, H.; Oh, I. K.; Ryu, G. H.; Lee, Z.; Kim, H.; Cho, J. H.; Ahn, J. H.; Lee, C. Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale 2014, 6, 2821–2826.

[39]

Li, B.; Jiang, L.; Li, X.; Ran, P.; Zuo, P.; Wang, A. D.; Qu, L. T.; Zhao, Y.; Cheng, Z. H.; Lu, Y. F. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water. Sci. Rep. 2017, 7, 11182.

[40]

Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged and free excitons. Sci. Rep. 2013, 3, 2657.

[41]

Sam, R. T.; Umakoshi, T.; Verma, P. Probing stacking configurations in a few layered MoS2 by low frequency Raman spectroscopy. Sci. Rep. 2020, 10, 21227.

[42]

Cortijo-Campos, S.; Prieto, C.; De Andrés, A. Size effects in single- and few-layer MoS2 nanoflakes: Impact on Raman phonons and photoluminescence. Nanomaterials 2022, 12, 1330.

[43]

Buscema, M.; Steele, G. A.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

[44]

Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.

[45]

Carvalho, B. R.; Wang, Y. X.; Mignuzzi, S.; Roy, D.; Terrones, M.; Fantini, C.; Crespi, V. H.; Malard, L. M.; Pimenta, M. A. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat. Commun. 2017, 8, 14670.

Nano Research
Pages 2145-2153
Cite this article:
Ghoshal T, Morris MA. Fabrication of sub-20 nm MoS2 horizontal nanowire on silicon substrates by inclusion of precursors into polystyrene-b-polyethylene oxide nanopatterns: Detailed structural investigation. Nano Research, 2024, 17(3): 2145-2153. https://doi.org/10.1007/s12274-023-6024-0
Topics:

862

Views

64

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 February 2021
Revised: 22 March 2021
Accepted: 07 April 2021
Published: 25 September 2023
© The author(s) 2023

Copyright: © 2021 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return