AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Synthesis of covalent organic framework materials and their application in the field of sensing

Weiyu Zhang1Shiwei Liu1Qihua Sun1( )Ning Tian1( )Zhaofeng Wu1,2( )
Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China
School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
Show Author Information

Graphical Abstract

This paper reviews the recent progress of covalent organic frameworks (COFs) in synthesis methods and sensing applications, including metal ion sensor, gas sensors, biomedical sensors, humidity sensors, and pH sensors. The advantages and disadvantages of different synthesis methods are discussed, and the existing problems and future development in synthesis methods and sensing applications are also presented in order to provide a reference for researchers concerned with COFs and sensors.

Abstract

Covalent organic frameworks (COFs) are an emerging type of porous crystalline polymers formed by combining strong covalent bonds with organic building blocks. Due to their large surface area, high intrinsic pore space, good crystallization properties, high stability, and designability of the resultant units, COFs are widely studied and used in the fields of gas adsorption, drug transport, energy storage, photoelectric catalysis, electrochemistry, and sensors. In recent years, the rapid development of the Internet of Things and people’s yearning for a better life have put forward higher and more requirements for sensors, which are the core components of the Internet of Things. Therefore, this paper reviews the recent progress of COFs in synthesis methods and sensing applications, especially in the last five years. This paper first introduces structure, properties, and synthesis methods of COFs and discusses advantages and disadvantages of different synthesis methods. Then, the research progress of COFs in different sensing fields, such as metal ion sensors, gas sensors, biomedical sensors, humidity sensors, and pH sensors, is introduced systematically. Conclusions and prospects are also presented in order to provide a reference for researchers concerned with COFs and sensors.

References

[1]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[2]

Kessler, C.; Schuldt, R.; Emmerling, S.; Lotsch, B. V.; Kästner, J.; Gross, J.; Hansen, N. Influence of layer slipping on adsorption of light gases in covalent organic frameworks: A combined experimental and computational study. Micropor. Mesoporous Mater. 2022, 336, 111796.

[3]

Kumar, S.; Abdulhamid, M. A.; Wonanke, A. D. D.; Addicoat, M. A.; Szekely, G. Norbornane-based covalent organic frameworks for gas separation. Nanoscale 2022, 14, 2475–2481.

[4]

Nailwal, Y.; Wonanke, A. D. D.; Addicoat, M. A.; Pal, S. K. A dual-function highly crystalline covalent organic framework for HCl sensing and visible-light heterogeneous photocatalysis. Macromolecules 2021, 54, 6595–6604.

[5]

Yusran, Y.; Li, H.; Guan, X. Y.; Li, D. H.; Tang, L. X.; Xue, M.; Zhuang, Z. B.; Yan, Y. S.; Valtchev, V.; Qiu, S. L. et al. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 2020, 32, 1907289.

[6]

Wu, M. X.; Yang, Y. W. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chin. Chem. Lett. 2017, 28, 1135–1143.

[7]

Liu, X. G.; Huang, D. L.; Lai, C.; Zeng, G. M.; Qin, L.; Wang, H.; Yi, H.; Li, B. S.; Liu, S. Y.; Zhang, M. M. et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 2019, 48, 5266–5302.

[8]

Segura, J. L.; Royuela, S.; Ramos, M. M. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 2019, 48, 3903–3945.

[9]

Li, Y.; Guo, X. H.; Li, X. F.; Zhang, M. C.; Jia, Z. M.; Deng, Y.; Tian, Y.; Li, S. J.; Ma, L. J. Redox-active two-dimensional covalent organic frameworks (COFs) for selective reductive separation of valence-variable, redox-sensitive and long-lived radionuclides. Angew. Chem. 2020, 132, 4197–4204.

[10]

Rodríguez-San-Miguel, D.; Zamora, F. Processing of covalent organic frameworks: An ingredient for a material to succeed. Chem. Soc. Rev. 2019, 48, 4375–4386.

[11]

Kandambeth, S.; Dey, K.; Banerjee, R. Covalent organic frameworks: Chemistry beyond the structure. J. Am. Chem. Soc. 2019, 141, 1807–1822.

[12]

Xu, S. Q.; Zhan, T. G.; Wen, Q.; Pang, Z. F.; Zhao, X. Diversity of covalent organic frameworks (COFs): A 2D COF containing two kinds of triangular micropores of different sizes. ACS Macro Lett. 2016, 5, 99–102.

[13]

Ma, Y. X.; Li, Z. J.; Wei, L.; Ding, S. Y.; Zhang, Y. B.; Wang, W. A dynamic three-dimensional covalent organic framework. J. Am. Chem. Soc. 2017, 139, 4995–4998.

[14]

Díaz, U.; Corma, A. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordin. Chem. Rev. 2016, 311, 85–124.

[15]

Vitaku, E.; Dichtel, W. R. Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 2017, 139, 12911–12914.

[16]

Wei, H.; Chai, S. Z.; Hu, N. T.; Yang, Z.; Wei, L. M.; Wang, L. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 2015, 51, 12178–12181.

[17]

Kuecken, S.; Schmidt, J.; Zhi, L. J.; Thomas, A. Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: A facile synthesis route for covalent triazine frameworks. J. Mater. Chem. A 2015, 3, 24422–24427.

[18]

Liu, W.; Cao, Y. P.; Wang, W. Z.; Gong, D. Y.; Cao, T.; Qian, J.; Iqbal, K.; Qin, W. W.; Guo, H. C. Mechanochromic luminescent covalent organic frameworks for highly selective hydroxyl radical detection. Chem. Commun. 2019, 55, 167–170.

[19]

Zhou, D.; Tan, X. Y.; Wu, H. M.; Tian, L. H.; Li, M. Synthesis of C–C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid–liquid interface. Angew. Chem. 2019, 131, 1390–1395.

[20]

Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Tan, X. N.; Shao, D.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Feng, J. Q.; Han, B. X. et al. Room-temperature synthesis of covalent organic framework (COF-LZU1) nanobars in CO2/water solvent. ChemSusChem 2018, 11, 3576–3580.

[21]

Luo, Q. X.; Cai, Y. J.; Mao, X. L.; Li, Y. J.; Zhang, C. R.; Liu, X.; Chen, X. R.; Liang, R. P.; Qiu, J. D. Tuned-potential covalent organic framework electrochemiluminescence platform for lutetium analysis. J. Electroanal. Chem. 2022, 923, 116831.

[22]

Zhang, T.; Chen, Y. L.; Huang, W.; Wang, Y.; Hu, X. Y. A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sens. Actuators B: Chem. 2018, 276, 362–369.

[23]

Zeng, J. Y.; Wang, X. S.; Zhang, X. Z. Research progress in covalent organic frameworks for photoluminescent materials. Chem.—Eur. J. 2020, 26, 16568–16581.

[24]

Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

[25]

Qin, Z. J.; Wu, Z. F.; Sun, Q. H.; Sun, J.; Zhang, M.; Shaymurat, T.; Lv, C. W.; Duan, H. M. Biomimetic gas sensor derived from disposable bamboo chopsticks for highly sensitive and selective detection of NH3. Chem. Eng. J. 2023, 462, 142203.

[26]

Cao, D. X.; Liu, Z. Q.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J. S.; Lin, W. Y. Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev. 2019, 119, 10403–10519.

[27]

Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

[28]

Li, W.; Yang, C. X.; Yan, X. P. A versatile covalent organic framework-based platform for sensing biomolecules. Chem. Commun. 2017, 53, 11469–11471.

[29]

Lyu, H.; Diercks, C. S.; Zhu, C. H.; Yaghi, O. M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 6848–6852.

[30]

Skorjanc, T.; Shetty, D.; Valant, M. Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sens. 2021, 6, 1461–1481.

[31]

Zhang, D. Z.; Yang, Z. M.; Li, P.; Zhou, X. Y. Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. Sens. Actuators B: Chem. 2019, 301, 127081.

[32]

Chen, S. D.; Yuan, B. Q.; Liu, G.; Zhang, D. J. Electrochemical sensors based on covalent organic frameworks: A critical review. Front. Chem. 2020, 8, 601044.

[33]

Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

[34]

Wang, L. Y.; Hong, S. S.; Yang, Y. X.; Song, Y. H.; Wang, L. Covalent organic frameworks for electrochemical sensors: Recent research and future prospects. Curr. Anal. Chem. 2022, 18, 646–663.

[35]

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

[36]

Hu, Y. M.; Dunlap, N.; Wan, S.; Lu, S. L.; Huang, S. F.; Sellinger, I.; Ortiz, M.; Jin, Y. H.; Lee, S. H.; Zhang, W. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 2019, 141, 7518–7525.

[37]

Li, Z. P.; Zhang, Y. W.; Xia, H.; Mu, Y.; Liu, X. M. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions. Chem. Commun. 2016, 52, 6613–6616.

[38]

Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 2011, 332, 228–231.

[39]

Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. 2015, 6, 3931–3939.

[40]

Zhou, Z. M.; Zhong, W. F.; Cui, K. X.; Zhuang, Z. Y.; Li, L. Y.; Li, L. Y.; Bi, J. H.; Yu, Y. A covalent organic framework bearing thioether pendant arms for selective detection and recovery of Au from ultra-low concentration aqueous solution. Chem. Commun. 2018, 54, 9977–9980.

[41]

Liu, M.; Chen, Y. J.; Huang, X.; Dong, L. Z.; Lu, M.; Guo, C.; Yuan, D. Q.; Chen, Y. F.; Xu, G.; Li, S. L. et al. Porphyrin-based COF 2D materials: Variable modification of sensing performances by post-metallization. Angew. Chem., Int. Ed. 2022, 61, e202115308.

[42]

Zhu, H.; Geng, T. M.; Tang, K. B. Fully flexible covalent organic frameworks for fluorescence sensing 2,4,6-trinitrophenol and p-nitrophenol. Polymers 2023, 15, 653.

[43]

Bu, R.; Zhang, L.; Liu, X. Y.; Yang, S. L.; Li, G.; Gao, E. Q. Synthesis and acid-responsive properties of a highly porous vinylene-linked covalent organic framework. ACS Appl. Mater. Interfaces 2021, 13, 26431–26440.

[44]

Spitler, E. L.; Koo, B. T.; Novotney, J. L.; Colson, J. W.; Uribe-Romo, F. J.; Gutierrez, G. D.; Clancy, P.; Dichtel, W. R. A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking. J. Am. Chem. Soc. 2011, 133, 19416–19421.

[45]

Ritchie, L. K.; Trewin, A.; Reguera-Galan, A.; Hasell, T.; Cooper, A. I. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Micropor. Mesopor. Mater. 2010, 132, 132–136.

[46]

Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450–3453.

[47]

Guan, X. Y.; Ma, Y. C.; Li, H.; Yusran, Y.; Xue, M.; Fang, Q. R.; Yan, Y. S.; Valtchev, V.; Qiu, S. L. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 4494–4498.

[48]

Peng, Y. W.; Xu, G. D.; Hu, Z. G.; Cheng, Y. D.; Chi, C. L.; Yuan, D. Q.; Cheng, H. S.; Zhao, D. Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity. ACS Appl. Mater. Interfaces 2016, 8, 18505–18512.

[49]

Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 5328–5331.

[50]

Matsumoto, M.; Valentino, L.; Stiehl, G. M.; Balch, H. B.; Corcos, A. R.; Wang, F.; Ralph, D. C.; Mariñas, B. J.; Dichtel, W. R. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films. Chem 2018, 4, 308–317.

[51]

Dey, K.; Pal, M.; Rout, K. C.; Kunjattu, H, S.; Das, A.; Mukherjee, R.; Kharul, U. K.; Banerjee, R. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 2017, 139, 13083–13091.

[52]

Rodríguez-San-Miguel, D.; Yazdi, A.; Guillerm, V.; Pérez-Carvajal, J.; Puntes, V.; Maspoch, D.; Zamora, F. Confining functional nanoparticles into colloidal imine-based COF spheres by a sequential encapsulation-crystallization method. Chem.—Eur. J. 2017, 23, 8623–8627.

[53]

de la Peña Ruigómez, A.; Rodríguez-San-Miguel, D.; Stylianou, K. C.; Cavallini, M.; Gentili, D.; Liscio, F.; Milita, S.; Roscioni, O. M.; Ruiz-González, M. L.; Carbonell, C. et al. Direct on-surface patterning of a crystalline laminar covalent organic framework synthesized at room temperature. Chem.—Eur. J. 2015, 21, 10666–10670.

[54]

Liu, S. F.; Liu, Z. Q.; Su, Q.; Wu, Q. L. Multifunctional covalent organic frameworks for photocatalytic oxidative hydroxylation of arylboronic acids and fluorescence sensing for Cu2+. Micropor. Mesopor. Mater. 2022, 333, 111737.

[55]

Makhseed, S.; Samuel, J. Hydrogen adsorption in microporous organic framework polymer. Chem. Commun. 2008, 4342–4344.

[56]

Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 2009, 21, 204–206.

[57]

Dong, B.; Wang, W. J.; Pan, W.; Kang, G. J. Ionic liquid as a green solvent for ionothermal synthesis of 2D keto-enamine-linked covalent organic frameworks. Mater. Chem. Phys. 2019, 226, 244–249.

[58]

Xiao, Y. L.; Jin, Z. Y.; He, L. X.; Ma, S. C.; Wang, C. Y.; Mu, X. W.; Song, L. Synthesis of a novel graphene conjugated covalent organic framework nanohybrid for enhancing the flame retardancy and mechanical properties of epoxy resins through synergistic effect. Compos. Part B: Eng. 2020, 182, 107616.

[59]

Das, G.; Shinde, D. B.; Kandambeth, S.; Biswal, B. P.; Banerjee, R. Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 2014, 50, 12615–12618.

[60]

Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189–6235.

[61]

Dai, W. Y.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y. H.; Schlüter, A. D.; Zhang, W. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem. 2016, 128, 221–225.

[62]

Medina, D. D.; Werner, V.; Auras, F.; Tautz, R.; Dogru, M.; Schuster, J.; Linke, S.; Döblinger, M.; Feldmann, J.; Knochel, P. et al. Oriented thin films of a benzodithiophene covalent organic framework. ACS Nano 2014, 8, 4042–4052.

[63]

Sahabudeen, H.; Qi, H. Y.; Glatz, B. A.; Tranca, D.; Dong, R. H.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, 7, 13426.

[64]

Wu, Z. F.; Zhang, M.; Cao, S.; Wang, L.; Qin, Z. J.; Zhong, F. R.; Duan, H. M. Flexible all-biomass gas sensor based on doped carbon quantum dots/nonwoven cotton with discriminative function. Cellulose 2022, 29, 5817–5832.

[65]

Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 2012, 41, 3210–3244.

[66]

Li, G. L.; Kong, W. H.; Zhao, M.; Lu, S. M.; Gong, P. W.; Chen, G.; Xia, L.; Wang, H.; You, J. M.; Wu, Y. N. A fluorescence resonance energy transfer (FRET) based “turn-on” nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening. Biosens. Bioelectron. 2016, 79, 728–735.

[67]

Tang, Z. W.; Chen, H. C.; He, H. L.; Ma, C. B. Assays for alkaline phosphatase activity: Progress and prospects. TrAC-Trend. Anal. Chem. 2019, 113, 32–43.

[68]

Zhang, X. L.; Li, G. L.; Wu, D.; Li, X. L.; Hu, N.; Chen, J.; Chen, G.; Wu, Y. N. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens. Bioelectron. 2019, 137, 178–198.

[69]

He, Z. H.; Gong, S. D.; Cai, S. L.; Yan, Y. L.; Chen, G.; Li, X. L.; Zheng, S. R.; Fan, J.; Zhang, W. G. A benzimidazole-containing covalent organic framework-based QCM sensor for exceptional detection of CEES. Cryst. Growth Des. 2019, 19, 3543–3550.

[70]

Zhang, X.; Chi, K. N.; Li, D. L.; Deng, Y.; Ma, Y. C.; Xu, Q. Q.; Hu, R.; Yang, Y. H. 2D-porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of C-reactive protein. Biosens. Bioelectron. 2019, 129, 64–71.

[71]

Singh, H.; Tomer, V. K.; Jena, N.; Bala, I.; Sharma, N.; Nepak, D.; De Sarkar, A.; Kailasam, K.; Pal, S. K. A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J. Mater. Chem. A 2017, 5, 21820–21827.

[72]

Franke, M. E.; Koplin, T. J.; Simon, U. Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter. Small 2006, 2, 36–50.

[73]

Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide semiconductor gas sensors. Catal. Surv. from Asia 2003, 7, 63–75.

[74]

Chen, S.; Zhao, P.; Jiang, L. Y.; Zhou, S. Y.; Zheng, J. L.; Luo, X. G.; Huo, D. Q.; Hou, C. J. Cu2O-mediated assembly of electrodeposition of Au nanoparticles onto 2D metal-organic framework nanosheets for real-time monitoring of hydrogen peroxide released from living cells. Anal. Bioanal. Chem. 2021, 413, 613–624.

[75]

Chiu, W. T.; Chang, T. F. M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Roles of TiO2 in the highly robust Au nanoparticles-TiO2 modified polyaniline electrode towards non-enzymatic sensing of glucose. Talanta 2020, 212, 120780.

[76]

Sangili, A.; Sakthivel, R.; Chen, S. M. Cost-effective single-step synthesis of flower-like cerium-ruthenium-sulfide for the determination of antipsychotic drug trifluoperazine in human urine samples. Anal. Chim. Acta 2020, 1131, 35–44.

[77]

Manavalan, S.; Ganesamurthi, J.; Chen, S. M.; Veerakumar, P.; Murugan, K. A robust Mn@FeNi-S/graphene oxide nanocomposite as a high-efficiency catalyst for the non-enzymatic electrochemical detection of hydrogen peroxide. Nanoscale 2020, 12, 5961–5972.

[78]

Li, J.; Hu, H. F.; Li, H. Y.; Yao, C. B. Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2. J. Mater. Sci. 2017, 52, 10455–10469.

[79]

Moraes, F. C.; Silva, T. A.; Cesarino, I.; Machado, S. A. S. Effect of the surface organization with carbon nanotubes on the electrochemical detection of bisphenol A. Sens. Actuators B: Chem. 2013, 177, 14–18.

[80]

Wang, L.; Lu, X. P.; Wen, C. J.; Xie, Y. Z.; Miao, L. F.; Chen, S. H.; Li, H. B.; Li, P.; Song, Y. H. One-step synthesis of Pt-NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing. J. Mater. Chem. A 2015, 3, 608–616.

[81]

Wang, L. N.; Wang, N.; Wen, J. P.; Jia, Y. J.; Pan, S. S.; Xiong, H. L.; Tang, Y.; Wang, J.; Yang, X. J.; Sun, Y. Z. et al. Ultrasensitive sensing of environmental nitroaromatic contaminants on nanocomposite of Prussian blue analogues cubes grown on glucose-derived porous carbon. Chem. Eng. J. 2020, 397, 125450.

[82]

Sun, Q. H.; Wu, Z. F.; Qin, Z. J.; Chen, X.; Zhang, C. C.; Cao, B. B.; Duan, H. M.; Zhang, J. A dog nose-inspired high-performance NH3 gas sensor of biomass carbon materials with a pleated structure derived from rose tea. J. Mater. Chem. A 2022, 10, 14326–14335.

[83]

Shu, Y.; Lu, Q.; Yuan, F.; Tao, Q.; Jin, D. Q.; Yao, H.; Xu, Q.; Hu, X. Y. Stretchable electrochemical biosensing platform based on Ni-MOF composite/Au nanoparticle-coated carbon nanotubes for real-time monitoring of dopamine released from living cells. ACS Appl. Mater. Interfaces 2020, 12, 49480–49488.

[84]

Wang, J. J.; Zhao, J. H.; Yang, J.; Cheng, J.; Tan, Y. Z.; Feng, H. H.; Li, Y. C. An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination. Microchim. Acta 2020, 187, 380.

[85]

Wang, L. Y.; Xie, Y.; Yang, Y. X.; Liang, H. H.; Wang, L.; Song, Y. H. Electroactive covalent organic frameworks/carbon nanotubes composites for electrochemical sensing. ACS Appl. Nano Mater. 2020, 3, 1412–1419.

[86]

Wang, Q. Z.; Li, R.; Zhao, Y. J.; Zhe, T. T.; Bu, T.; Liu, Y. N.; Sun, X. Y.; Hu, H. F.; Zhang, M.; Zheng, X. H. et al. Surface morphology-controllable magnetic covalent organic frameworks: A novel electrocatalyst for simultaneously high-performance detection of p-nitrophenol and o-nitrophenol. Talanta 2020, 219, 121255.

[87]

Li, J.; Liu, Y. L.; Zhu, X. q.; Chang, G.; He, H. p.; Zhang, X. h.; Wang, S. f. A novel electrochemical biosensor based on a double-signal technique for d(CAG)n trinucleotide repeats. ACS Appl. Mater. Interfaces 2017, 9, 44231–44240.

[88]

Dong, H.; Zhou, Y. L.; Zhao, L.; Hao, Y. Q.; Zhang, Y. T.; Ye, B. X.; Xu, M. T. Dual-response ratiometric electrochemical microsensor for effective simultaneous monitoring of hypochlorous acid and ascorbic acid in human body fluids. Anal. Chem. 2020, 92, 15079–15086.

[89]

Zhang, W. Y.; Wu, Z. F.; Hu, J. D.; Cao, Y. L.; Guo, J. X.; Long, M. Q.; Duan, H. M.; Jia, D. Z. Flexible chemiresistive sensor of polyaniline coated filter paper prepared by spraying for fast and non-contact detection of nitroaromatic explosives. Sens. Actuators B: Chem. 2020, 304, 127233.

[90]

Zhang, W.; Qiu, L. G.; Yuan, Y. P.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives. J. Hazard. Mater. 2012, 221–222, 147–154.

[91]

Dalapati, S.; Jin, S. B.; Gao, J.; Xu, Y. H.; Nagai, A.; Jiang, D. L. An azine-linked covalent organic framework. J. Am. Chem. Soc. 2013, 135, 17310–17313.

[92]

Zhang, C. L.; Zhang, S. M.; Yan, Y. H.; Xia, F.; Huang, A. N.; Xian, Y. Z. Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6-trinitrophenol. ACS Appl. Mater. Interfaces 2017, 9, 13415–13421.

[93]

Rao, M. R.; Fang, Y.; De Feyter, S.; Perepichka, D. F. Conjugated covalent organic frameworks via Michael addition-elimination. J. Am. Chem. Soc. 2017, 139, 2421–2427.

[94]

Jiang, S.; Meng, L. C.; Lv, M. X.; Bai, F. Y.; Tian, W. J.; Xing, Y. H. Molecular insights into multi-channel detection of nitrophenol explosives and acids in covalent organic frameworks with diverse hydrazone moieties. Micropor. Mesopor. Mater. 2023, 348, 112408.

[95]

Das, P.; Mandal, S. K. A dual-functionalized, luminescent and highly crystalline covalent organic framework: Molecular decoding strategies for VOCs and ultrafast TNP sensing. J. Mater. Chem. A 2018, 6, 16246–16256.

[96]

Lin, G. Q.; Ding, H. M.; Chen, R. F.; Peng, Z. K.; Wang, B. S.; Wang, C. 3D porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 8705–8709.

[97]

Konvalina, G.; Haick, H. Sensors for breath testing: From nanomaterials to comprehensive disease detection. Acc. Chem. Res. 2014, 47, 66–76.

[98]

Zhou, Y.; Yan, B. A responsive MOF nanocomposite for decoding volatile organic compounds. Chem. Commun. 2016, 52, 2265–2268.

[99]

Xu, K.; Huang, N. Recent advances of covalent organic frameworks in chemical sensing. Chem. Res. Chin. Univ. 2022, 38, 339–349.

[100]

Cao, S.; Wu, Z. F.; Sun, Q. H.; Zhang, W. Y.; Beysen, S.; Wang, S. Y.; Shaymurat, T.; Zhang, M.; Duan, H. M. Gas sensing properties of cotton-based carbon fibers and ZnO/carbon fibers regulated by changing carbonization temperatures. Sens. Actuators B: Chem. 2021, 337, 129818.

[101]

Wang, Y. P.; Zhao, Z. Y.; Li, G. L.; Yan, Y.; Hao, C. A 2D covalent organic framework as a sensor for detecting formaldehyde. J. Mol. Model. 2018, 24, 153.

[102]

Zhang, S. H.; Yang, Q.; Xu, X. T.; Liu, X. H.; Li, Q.; Guo, J. R.; Torad, N. L.; Alshehri, S. M.; Ahamad, T.; Hossain, S. A. et al. Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing. Nanoscale 2020, 12, 15611–15619.

[103]

Xie, Y. F.; Ding, S. Y.; Liu, J. M.; Wang, W.; Zheng, Q. Y. Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. J. Mater. Chem. C 2015, 3, 10066–10069.

[104]

Yuan, H. Y.; Li, N. X.; Linghu, J. J.; Dong, J. Q.; Wang, Y. X.; Karmakar, A.; Yuan, J. R.; Li, M. S.; Buenconsejo, P. J. S.; Liu, G. L. et al. Chip-level integration of covalent organic frameworks for trace benzene sensing. ACS Sens. 2020, 5, 1474–1481.

[105]

Dalapati, S.; Jin, E. Q.; Addicoat, M.; Heine, T.; Jiang, D. L. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 2016, 138, 5797–5800.

[106]

Niu, F.; Shao, Z. W.; Zhu, J. L.; Tao, L. M.; Ding, Y. Structural evolution of imine-linked covalent organic frameworks and their NH3 sensing performance. J. Mater. Chem. C 2021, 9, 8562–8569.

[107]

Ahmed, S. A.; Xing, X. L.; Liao, Q. B.; Li, Z. Q.; Li, C. Y.; Xi, K.; Wang, K.; Xia, X. H. Study on ammonia content and distribution in the microenvironment based on covalent organic framework nanochannels. Anal. Chem. 2022, 94, 11224–11229.

[108]

Das, G.; Garai, B.; Prakasam, T.; Benyettou, F.; Varghese, S.; Sharma, S. K.; Gándara, F.; Pasricha, R.; Baias, M.; Jagannathan, R. et al. Fluorescence turn on amine detection in a cationic covalent organic framework. Nat. Commun. 2022, 13, 3904.

[109]

Cui, F. Z.; Xie, J. J.; Jiang, S. Y.; Gan, S. X.; Ma, D. L.; Liang, R. R.; Jiang, G. F.; Zhao, X. A gaseous hydrogen chloride chemosensor based on a 2D covalent organic framework. Chem. Commun. 2019, 55, 4550–4553.

[110]

Guselnikova, O.; Kalachyova, Y.; Elashnikov, R.; Cieslar, M.; Kolska, Z.; Sajdl, P.; Postnikov, P.; Svorcik, V.; Lyutakov, O. Taking the power of plasmon-assisted chemistry on copper NPs: Preparation and application of COFs nanostructures for CO2 sensing in water. Micropor. Mesopor. Mater. 2020, 309, 110577.

[111]

Zhao, L. M.; Liang, X.; Ni, Z. J.; Zhao, H.; Ge, B.; Li, W. Z. Covalent organic framework modified polyacrylamide electrospun nanofiber membrane as a “turn-on” fluorescent sensor for primary aliphatic amine gas. Sens. Actuators B: Chem. 2022, 366, 131988.

[112]

Shao, S. F.; Xie, C. Y.; Xia, Y. X.; Zhang, L.; Zhang, J.; Wei, S.; Kim, H. W.; Kim, S. S. Highly conjugated three-dimensional van der Waals heterostructure-based nanocomposite films for ultrahigh-responsive TEA gas sensors at room temperature. J. Mater. Chem. A 2022, 10, 2995–3008.

[113]

Ye, W.; Zhao, L. D.; Lin, H. Z.; Ding, L. F.; Cao, Q.; Chen, Z. K.; Wang, J.; Sun, Q. M.; He, J. H.; Lu, J. M. Halide Perovskite glues activate two-dimensional covalent organic framework crystallites for selective NO2 sensing. Nat. Commun. 2023, 14, 2133.

[114]

Das, P.; Mandal, S. K. A highly emissive fluorescent Zn-MOF: Molecular decoding strategies for solvents and trace detection of dunnite in water. J. Mater. Chem. A 2018, 6, 21274–21279.

[115]

Lian, X.; Yan, B. Trace detection of organophosphorus chemical warfare agents in wastewater and plants by luminescent UIO-67 (Hf) and evaluating the bioaccumulation of organophosphorus chemical warfare agents. ACS Appl. Mater. Interfaces 2018, 10, 14869–14876.

[116]

Liu, Y.; Yan, X. D.; Lu, H. S.; Zhang, W. D.; Shi, Y. X.; Gu, Z. G. A three-dimensional covalent organic framework with turn-on luminescence for molecular decoding of volatile organic compounds. Sens. Actuators B: Chem. 2020, 323, 128708.

[117]

Zhang, D. W.; Wang, Y. P.; Geng, W. T.; Liu, H. L. Rapid detection of tryptamine by optosensor with molecularly imprinted polymers based on carbon dots-embedded covalent-organic frameworks. Sens. Actuators B: Chem. 2019, 285, 546–552.

[118]

Huang, D. L.; Liu, X. G.; Lai, C.; Qin, L.; Zhang, C.; Yi, H.; Zeng, G. M.; Li, B. S.; Deng, R.; Liu, S. Y. et al. Colorimetric determination of mercury(II) using gold nanoparticles and double ligand exchange. Microchim. Acta 2019, 186, 31.

[119]

Qin, L.; Zeng, G. M.; Lai, C.; Huang, D. L.; Zhang, C.; Xu, P.; Hu, T. J.; Liu, X. G.; Cheng, M.; Liu, Y. et al. A visual application of gold nanoparticles: Simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sens. Actuators B: Chem. 2017, 243, 946–954.

[120]

Revesz, I. A.; Hickey, S. M.; Sweetman, M. J. Metal ion sensing with graphene quantum dots: Detection of harmful contaminants and biorelevant species. J. Mater. Chem. B 2022, 10, 4346–4362.

[121]

Zheng, J. W.; Rahim, A.; Tang, J. B.; Allioux, F. M.; Kalantar-Zadeh, K. Post-transition metal electrodes for sensing heavy metal ions by stripping voltammetry. Adv. Mater. Technol. 2022, 7, 2100760.

[122]

Wang, L. S.; Chen, Y. J.; Zhang, Z.; Chen, Y. L.; Deng, Q. L.; Wang, S. Bipyridine-linked three-dimensional covalent organic frameworks for fluorescence sensing of cobalt(II) at nanomole level. Microchim. Acta 2021, 188, 167.

[123]

Chatterjee, S.; Lou, X. Y.; Liang, F.; Yang, Y. W. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coordin. Chem. Rev. 2022, 459, 214461.

[124]

Fu, F. L.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 2011, 92, 407–418.

[125]

Olivares, M.; Uauy, R. Copper as an essential nutrient. Am. J. Clin. Nutr. 1996, 63, 791S–796S.

[126]

Cui, C.; Wang, Q. B.; Xin, C. H.; Liu, Q. Y.; Deng, X.; Liu, T. T.; Xu, X. H.; Zhang, X. M. Covalent organic framework with bidentate ligand sites as reliable fluorescent sensor for Cu2+. Micropor. Mesopor. Mater. 2020, 299, 110122.

[127]

Ahmed, L. R.; EL-Mahdy, A. F. M.; Pan, C. T.; Kuo, S. W. A water-soluble copper-immobilized covalent organic framework functioning as an “off-on” fluorescent sensor for amino acids. Mater. Adv. 2021, 2, 4617–4629.

[128]

Zhang, S. Y.; Tang, X. H.; Yan, Y. L.; Li, S. Q.; Zheng, S. R.; Fan, J.; Li, X. L.; Zhang, W. G.; Cai, S. L. Facile and site-selective synthesis of an amine-functionalized covalent organic framework. ACS Macro Lett. 2021, 10, 1590–1596.

[129]

Dong, Z. Y.; Yang, Y. X.; Cai, X. T.; Tang, X. H.; Yan, Y. L.; Zheng, S. R.; Zhang, W. G.; Cai, S. L.; Fan, J. Site-selective synthesis of an amine-functionalized β-ketoenamine-linked covalent organic framework for improved detection and removal of Cu2+ ion from water. J. Solid State Chem. 2022, 316, 123644.

[130]

Jia, Y. H.; Wang, J. M.; Zhao, L. M.; Yan, B. A double responsive fluorescent platform for sensing heavy metal ions based on a dual-emitting fluorescent covalent organic framework hydrogel film. Dalton. Trans. 2022, 51, 14352–14358.

[131]

Li, Y. J.; Chen, M. H.; Han, Y. N.; Feng, Y. Q.; Zhang, Z. J.; Zhang, B. Fabrication of a new corrole-based covalent organic framework as a highly efficient and selective chemosensor for heavy metal ions. Chem. Mater. 2020, 32, 2532–2540.

[132]

Sahoo, S. K.; Sharma, D.; Bera, R. K.; Crisponi, G.; Callan, J. F. Iron(III) selective molecular and supramolecular fluorescent probes. Chem. Soc. Rev. 2012, 41, 7195–7227.

[133]

Zhang, C. Q.; Yan, Y.; Pan, Q. H.; Sun, L. B.; He, H. M.; Liu, Y. L.; Liang, Z. Q.; Li, J. Y. A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe3+ ions. Dalton. Trans 2015, 44, 13340–13346.

[134]

Wang, T.; Xue, R.; Chen, H. Q.; Shi, P. L.; Lei, X.; Wei, Y. L.; Guo, H.; Yang, W. Preparation of two new polyimide bond linked porous covalent organic frameworks and their fluorescence sensing application for sensitive and selective determination of Fe3+. New J. Chem. 2017, 41, 14272–14278.

[135]

Wang, L. L.; Yang, C. X.; Yan, X. P. Exploring fluorescent covalent organic frameworks for selective sensing of Fe3+. Sci. China Chem. 2018, 61, 1470–1474.

[136]

Chen, G.; Lan, H. H.; Cai, S. L.; Sun, B.; Li, X. L.; He, Z. H.; Zheng, S. R.; Fan, J.; Liu, Y.; Zhang, W. G. Stable hydrazone-linked covalent organic frameworks containing O,N,O'-chelating sites for Fe(III) detection in water. ACS Appl. Mater. Interfaces 2019, 11, 12830–12837.

[137]

Fang, X.; Liu, Y.; Han, W. K.; Yan, X. D.; Shi, Y. X.; Chen, L. H.; Jiang, Y. Q.; Zhang, J. W.; Gu, Z. G. A luminescent covalent organic framework with recognition traps for nitro-pesticides detection, pH sensing and metal ions identification. Dyes Pigments 2022, 205, 110507.

[138]

Li, D. M.; Zhang, S. Y.; Wan, J. Y.; Zhang, W. Q.; Yan, Y. L.; Tang, X. H.; Zheng, S. R.; Cai, S. L.; Zhang, W. G. A new hydrazone-linked covalent organic framework for Fe(III) detection by fluorescence and QCM technologies. CrystEngComm 2021, 23, 3594–3601.

[139]

Gong, W.; Liu, C. Y.; Shi, H. L.; Yin, M. X.; Li, W. J.; Song, Q. B.; Dong, Y. J.; Zhang, C. Dual-function fluorescent hydrazone-linked covalent organic frameworks for acid vapor sensing and iron(III) ion sensing. J. Mater. Chem. C 2022, 10, 3553–3559.

[140]

Xiu, J.; Li, C.; Wang, G. Study on colorimetric sensing performance of covalent organic framework for highly selective and sensitive detection of Fe2+ and Fe3+ ions. J. Mol. Struct. 2023, 1276, 134779.

[141]

Zhou, S. X.; Wang, X. F.; Cao, X. D.; Ning, J.; Hao, L. Covalent organic frameworks constructed step by step using a [(C3 + C2) + C2] strategy toward fluorescence detection of Fe3+. Chem. Commun. 2022, 58, 12240–12243.

[142]

Xia, M.; Shen, T. Y.; Li, C. K.; Fan, R. M.; Feng, L. J.; Chen, Q. 2D COFs paper composites fabricated by the in situ growth for visual detection of target metal ions. Mater. Chem. Phys. 2022, 286, 126208.

[143]

Asadi, P.; Falsafin, M.; Dinari, M. Construction of new covalent organic frameworks with benzimidazole moiety as Fe3+ selective fluorescence chemosensors. J. Mol. Struct. 2021, 1227, 129546.

[144]

You, J.; Kong, Q. Q.; Zhang, C. L.; Xian, Y. Z. Designed Synthesis of a sp2 carbon-conjugated fluorescent covalent organic framework for selective detection of Fe3+. Anal. Methods 2022, 14, 2389–2395.

[145]

Cui, D.; Ding, X. S.; Xie, W.; Xu, G. J.; Su, Z. M.; Xu, Y. H.; Xie, Y. Z. A tetraphenylethylene-based covalent organic framework for waste gas adsorption and highly selective detection of Fe3+. CrystEngComm 2021, 23, 5569–5574.

[146]

Carmouche, J. J.; Puzas, J. E.; Zhang, X. P.; Tiyapatanaputi, P.; Cory-Slechta, D. A.; Gelein, R.; Zuscik, M.; Rosier, R. N.; Boyce, B. F.; O’Keefe, R. J. et al. Lead exposure inhibits fracture healing and is associated with increased chondrogenesis, delay in cartilage mineralization, and a decrease in osteoprogenitor frequency. Environ. Health Persp. 2005, 113, 749–755.

[147]

Behbahani, M.; Bagheri, A.; Taghizadeh, M.; Salarian, M.; Sadeghi, O.; Adlnasab, L.; Jalali, K. Synthesis and characterisation of nano structure lead(II) ion-imprinted polymer as a new sorbent for selective extraction and preconcentration of ultra trace amounts of lead ions from vegetables, rice, and fish samples. Food Chem. 2013, 138, 2050–2056.

[148]

Zhang, T.; Gao, C. W.; Huang, W.; Chen, Y. L.; Wang, Y.; Wang, J. M. Covalent organic framework as a novel electrochemical platform for highly sensitive and stable detection of lead. Talanta 2018, 188, 578–583.

[149]

Shi, X. F.; Yao, Y. J.; Xu, Y. L.; Liu, K.; Zhu, G. S.; Chi, L. F.; Lu, G. Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl. Mater. Interfaces 2017, 9, 7481–7488.

[150]

Wang, R. Y.; Ji, W. H.; Huang, L. Q.; Guo, L. P.; Wang, X. Electrochemical determination of lead(II) in environmental waters using a sulfydryl modified covalent organic framework by square wave anodic stripping voltammetry (SWASV). Anal. Lett. 2019, 52, 1757–1770.

[151]

Zhao, C. R.; Zhang, L. Y.; Wang, Q.; Zhang, L. T.; Zhu, P. H.; Yu, J. H.; Zhang, Y. Porphyrin-based covalent organic framework thin films as cathodic materials for “on–off–on” photoelectrochemical sensing of lead ions. ACS Appl. Mater. Interfaces 2021, 13, 20397–20404.

[152]

Zhang, N.; Wei, B. X.; Ma, T. T.; Tian, Y. Y.; Wang, G. A carbazole-grafted covalent organic framework as turn-on fluorescence chemosensor for recognition and detection of Pb2+ ions with high selectivity and sensitivity. J. Mater. Sci. 2021, 56, 11789–11800.

[153]

Pan, F.; Tong, C. Y.; Wang, Z. Y.; Han, H. T.; Liu, P.; Pan, D. W.; Zhu, R. L. Nanocomposite based on graphene and intercalated covalent organic frameworks with hydrosulphonyl groups for electrochemical determination of heavy metal ions. Microchim. Acta 2021, 188, 295.

[154]

Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.; Su, C. Y.; Wang, W. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J. Am. Chem. Soc. 2016, 138, 3031–3037.

[155]

Li, D. M.; Li, S. Q.; Huang, J. Y.; Yan, Y. L.; Zhang, S. Y.; Tang, X. H.; Fan, J.; Zheng, S. R.; Zhang, W. G.; Cai, S. L. A recyclable bipyridine-containing covalent organic framework-based QCM sensor for detection of Hg(II) ion in aqueous solution. J. Solid State Chem. 2021, 302, 122421.

[156]

Yin, Y.; Liu, G. Application of synthesized 2,5-bis (allyloxy) terephthalohydrazide functionalized covalent organic framework material as a fluorescence probe for selective detection of mercury(II). Mater. Today Commun. 2021, 27, 102440.

[157]

Guo, L. L.; Song, Y. H.; Cai, K. Y.; Wang, L. “On-off” ratiometric fluorescent detection of Hg2+ based on N-doped carbon dots-rhodamine B@TAPT-DHTA-COF. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2020, 227, 117703.

[158]

Panda, A.; Yang, Y. Q.; Venkateswarlu, S.; Son, Y.; Bae, T. H.; Yoon, M. Highly durable covalent organic framework for the simultaneous ultrasensitive detection and removal of noxious Hg2+. Micropor. Mesopor. Mater. 2020, 306, 110399.

[159]

Shamsipur, M.; Sadeghi, M.; Alizadeh, K.; Sharghi, H.; Khalifeh, R. An efficient and selective flourescent optode membrane based on 7-[(5-chloro-8-hydroxy-7-quinolinyl) methyl]-5,6,7,8,9,10-hexahydro-2H-1,13,4,7,10-benzodioxatriazacyclopentadecine-3,11(4H,12H)-dione as a novel fluoroionophore for determination of cobalt(II) ions. Anal. Chim. Acta 2008, 630, 57–66.

[160]

Wang, H. X.; Wang, D. L.; Wang, Q.; Li, X. Y.; Schalley, C. A. Nickel(II) and iron(III) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide. Org. Biomol. Chem. 2010, 8, 1017–1026.

[161]

Erulas, F. A. Sensitive determination of nickel at trace levels in surface water samples by slotted quartz tube flame atomic absorption spectrometry after switchable solvent liquid-phase microextraction. Environ. Monit. Assess. 2020, 192, 272.

[162]

Chen, Y. J.; Sun, R.; Zhu, W. H.; Zhang, Z.; Chen, Y. L.; Wang, S.; Deng, Q. L. Desirability of position 2,2'-bipyridine group into COFs for the fluorescence sensing of Ni(II). Sens. Actuators B: Chem. 2021, 344, 130216.

[163]

Cui, W. R.; Zhang, C. R.; Jiang, W.; Li, F. F.; Liang, R. P.; Liu, J. W.; Qiu, J. D. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat. Commun. 2020, 11, 436.

[164]

Niu, J. J.; Yan, W. J.; Du, J.; Hao, X. G.; Wang, F. B.; Wang, Z. D.; Guan, G. Q. An electrically switched ion exchange film with molecular coupling synergistically-driven ability for recovery of Ag+ ions from wastewater. Chem. Eng. J. 2020, 389, 124498.

[165]

Yin, X. C.; Shao, P. H.; Ding, L.; Xi, Y.; Zhang, K.; Yang, L. M.; Shi, H.; Luo, X. B. Protonation of rhodanine polymers for enhancing the capture and recovery of Ag+ from highly acidic wastewater. Environ. Sci.: Nano 2019, 6, 3307–3315.

[166]

Zhang, D.; Yang, R. T. Superior silver sorbents for removing 2-vinyl thiophene from styrene by π-complexation. Ind. Eng. Chem. Res. 2019, 58, 1769–1772.

[167]

Zhang, Y. B.; Wang, Q.; Li, Y. Q.; Hu, R. G. Bithiophene-based COFs for silver ions detection and removal. Micropor. Mesopor. Mater. 2022, 346, 112289.

[168]

Li, B. W.; Zeng, H. C. Minimalization of metallic Pd formation in Suzuki reaction with a solid-state organometallic catalyst. ACS Appl. Mater. Interfaces 2020, 12, 33827–33837.

[169]

Garrett, C. E.; Prasad, K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv. Synth. Catal. 2004, 346, 889–900.

[170]

Lu, Y.; Liang, Y.; Zhao, Y. X.; Xia, M.; Liu, X.; Shen, T. Y.; Feng, L. J.; Yuan, N.; Chen, Q. Fluorescent test paper via the in situ growth of COFs for rapid and convenient detection of Pd(II) ions. ACS Appl. Mater. Interfaces 2021, 13, 1644–1650.

[171]

Yue, J. Y.; Ding, X. L.; Wang, Y. T.; Wen, Y. X.; Yang, P.; Ma, Y.; Tang, B. Dual functional sp2 carbon-conjugated covalent organic frameworks for fluorescence sensing and effective removal and recovery of Pd2+ ions. J. Mater. Chem. A 2021, 9, 26861–26866.

[172]

Ju, P. Y.; Su, Q.; Liu, Z. Q.; Li, X. D.; Guo, B. X.; Liu, W. T.; Li, G. H.; Wu, Q. L. A Salen-based covalent organic polymer as highly selective and sensitive fluorescent sensor for detection of Al3+, Fe3+ and Cu2+ ions. J. Mater. Sci. 2019, 54, 851–861.

[173]

Cannon, J. R.; Greenamyre, J. T. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol. Sci. 2011, 124, 225–250.

[174]

Xiu, J.; Zhang, N.; Li, C.; Salah, A.; Wang, G. Tetraphenylethylene-based covalent organic frameworks as fluorescent chemosensor for rapid sensitive recognition and selective “turn-on” fluorescence detection of trace-level Al3+ ion. Micropor. Mesopor. Mater. 2021, 316, 110979.

[175]

Afshari, M.; Dinari, M.; Farrokhpour, H.; Zamora, F. Imine-linked covalent organic framework with a naphthalene moiety as a sensitive phosphate ion sensing. ACS Appl. Mater. Interfaces 2022, 14, 22398–22406.

[176]

Prasad, A. S. Impact of the discovery of human zinc deficiency on health. J. Trace Elem. Med. Biol. 2014, 28, 357–363.

[177]

Sanusi, K. O.; Ibrahim, K. G.; Abubakar, B.; Malami, I.; Bello, M. B.; Imam, M. U.; Abubakar, M. B. Effect of maternal zinc deficiency on offspring health: The epigenetic impact. J. Trace Elem. Med. Biol. 2021, 65, 126731.

[178]

Kan, X. Q.; Dong, Y. Q.; Feng, L.; Zhou, M.; Hou, H. B. Contamination and health risk assessment of heavy metals in China’s lead-zinc mine tailings: A meta-analysis. Chemosphere 2021, 267, 128909.

[179]

Yin, Y.; Liu, G. Application of a novel hydroxyl functionalized fluorescent covalent organic framework for turn-off ultrasensitive Zn2+ ion detection. Anal. Methods 2022, 14, 1988–1995.

[180]

Wang, P. Y.; Kang, M. M.; Sun, S. M.; Liu, Q.; Zhang, Z. H.; Fang, S. M. Imine-linked covalent organic framework on surface for biosensor. Chin. J. Chem. 2014, 32, 838–843.

[181]

Zhang, T.; Ma, N.; Ali, A.; Wei, Q.; Wu, D.; Ren, X. Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosens. Bioelectron. 2018, 119, 176–181.

[182]

Song, Z. P.; Song, J.; Gao, F.; Chen, X. P.; Wang, Q. H.; Zhao, Y. N.; Huang, X. G.; Yang, C. Y.; Wang, Q. X. Novel electroactive ferrocene-based covalent organic frameworks towards electrochemical label-free aptasensors for the detection of cardiac troponin I. Sens. Actuators B: Chem. 2022, 368, 132205.

[183]

Feng, S. N.; Yan, M. X.; Xue, Y.; Huang, J. S.; Yang, X. R. Electrochemical immunosensor for cardiac troponin I detection based on covalent organic framework and enzyme-catalyzed signal amplification. Anal. Chem. 2021, 93, 13572–13579.

[184]

Wang, P.; Zhou, F.; Zhang, C.; Yin, S. Y.; Teng, L. L.; Chen, L. L.; Hu, X. X.; Liu, H. W.; Yin, X.; Zhang, X. B. Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem. Sci. 2018, 9, 8402–8408.

[185]

Yan, X.; Song, Y. P.; Liu, J. M.; Zhou, N.; Zhang, C. L.; He, L. H.; Zhang, Z. H.; Liu, Z. Y. Two-dimensional porphyrin-based covalent organic framework: A novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens. Bioelectron. 2019, 126, 734–742.

[186]

Wang, M. H.; Zhu, L.; Zhang, S.; Lou, Y. F.; Zhao, S. R.; Tan, Q.; He, L. H.; Du, M. A copper(II) phthalocyanine-based metallo-covalent organic framework decorated with silver nanoparticle for sensitively detecting nitric oxide released from cancer cells. Sens. Actuators B: Chem. 2021, 338, 129826.

[187]

Zhu, P. H.; Li, S. S.; Zhou, S.; Ren, N.; Ge, S. G.; Zhang, Y.; Wang, Y. F.; Yu, J. H. In situ grown COFs on 3D strutted graphene aerogel for electrochemical detection of NO released from living cells. Chem. Eng. J. 2021, 420, 127559.

[188]

Cheng, J. M.; Hu, K.; Liu, Q. R.; Liu, Y. J.; Yang, H. X.; Kong, J. M. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2Tx-MXene as enhancer and covalent organic frameworks as labels. Anal. Bioanal. Chem. 2021, 413, 2543–2551.

[189]

Guo, L.; Mu, Z. D.; Yan, B.; Wang, J.; Zhou, J.; Bai, L. J. A novel electrochemical biosensor for sensitive detection of non-small cell lung cancer ctDNA using NG-PEI-COFTAPB-TFPB as sensing platform and Fe-MOF for signal enhancement. Sens. Actuators B: Chem. 2022, 350, 130874.

[190]

Wang, M. H.; Lin, Y. X.; Lu, J. Y.; Sun, Z. W.; Deng, Y.; Wang, L.; Yi, Y. X.; Li, J. L.; Yang, J.; Li, G. X. Visual naked-eye detection of SARS-CoV-2 RNA based on covalent organic framework capsules. Chem. Eng. J. 2022, 429, 132332.

[191]

Liang, D.; Zhang, X. Y.; Wang, Y.; Huo, T. T.; Qian, M.; Xie, Y. B.; Li, W. S.; Yu, Y. Q.; Shi, W.; Liu, Q. Q. et al. Magnetic covalent organic framework nanospheres-based miRNA biosensor for sensitive glioma detection. Bioact. Mater. 2022, 14, 145–151.

[192]

Chen, Y. N.; Wang, S. L.; Ren, J. J.; Zhao, H. Y.; Cui, M.; Li, N.; Li, M.; Zhang, C. Electrocatalysis of copper sulfide nanoparticle-engineered covalent organic frameworks for ratiometric electrochemical detection of amyloid-β oligomer. Anal. Chem. 2022, 94, 11201–11208.

[193]

Wang, M. H.; Pan, Y. H.; Wu, S.; Sun, Z. W.; Wang, L.; Yang, J.; Yin, Y. M.; Li, G. X. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks. Biosens. Bioelectron. 2020, 169, 112638.

[194]

Han, Y. W.; Lu, J. Y.; Wang, M. H.; Sun, C. X.; Yang, J.; Li, G. X. An electrochemical biosensor for exosome detection based on covalent organic frameworks conjugated with DNA and horseradish peroxidase. J. ElectroAnal. Chem. 2022, 920, 116576.

[195]

Cui, J.; Kan, L.; Li, Z. Z.; Yang, L. Y.; Wang, M. H.; He, L. H.; Lou, Y. F.; Xue, Y. L.; Zhang, Z. H. Porphyrin-based covalent organic framework as bioplatfrom for detection of vascular endothelial growth factor 165 through fluorescence resonance energy transfer. Talanta 2021, 228, 122060.

[196]

Yan, X. S.; Li, H. K.; Yin, T. Y.; Jie, G. F.; Zhou, H. Photoelectrochemical biosensing platform based on in situ generated ultrathin covalent organic framework film and AgInS2 QDs for dual target detection of HIV and CEA. Biosens. Bioelectron. 2022, 217, 114694.

[197]

Wang, J. M.; Yan, B. Improving covalent organic frameworks fluorescence by triethylamine pinpoint surgery as selective biomarker sensor for diabetes mellitus diagnosis. Anal. Chem. 2019, 91, 13183–13190.

[198]

Zhao, X.; Guo, H.; Xue, R.; Wang, M. Y.; Guan, Q. X.; Fan, T.; Yang, W. H.; Yang, W. Electrochemical sensing and simultaneous determination of guanine and adenine based on covalent organic frameworks/NH2-rG/MoS2 modified glassy carbon electrode. Microchem. J. 2021, 160, 105759.

[199]

Zheng, J.; Zhao, H.; Ning, G. B.; Sun, W. J.; Wang, L.; Liang, H.; Xu, H. B.; He, C. Y.; Li, C. P. A novel affinity peptide-antibody sandwich electrochemical biosensor for PSA based on the signal amplification of MnO2-functionalized covalent organic framework. Talanta 2021, 233, 122520.

[200]

Lu, X.; Li, S. N.; Guo, W.; Zhang, F.; Qu, F. A covalent organic polymer-TiO2/Ti3C2 heterostructure as nonenzymatic biosensor for voltammetric detection of dopamine and uric acid. Microchim. Acta 2021, 188, 95.

[201]

Yang, L.; Li, M. Y.; Kuang, L. J.; Li, Y. H.; Chen, L. L.; Lin, C. H.; Wang, L.; Song, Y. H. Benzotrithiophene-based covalent organic frameworks for real-time visual onsite assays of enrofloxacin. Biosens. Bioelectron. 2022, 214, 114527.

[202]

Liu, X. Y.; Wang, F.; Meng, Y.; Zhao, L. P.; Shi, W. J.; Wang, X.; He, Z. K.; Chao, J.; Li, C. L. Electrochemical/visual microfluidic detection with a covalent organic framework supported platinum nanozyme-based device for early diagnosis of pheochromocytoma. Biosens. Bioelectron. 2022, 207, 114208.

[203]

Wang, J. N.; Yang, X.; Wei, T. X.; Bao, J. C.; Zhu, Q. S.; Dai, Z. H. Fe-porphyrin-based covalent organic framework as a novel peroxidase mimic for a one-pot glucose colorimetric assay. ACS Appl. Bio Mater. 2018, 1, 382–388.

[204]

Xie, Y.; Xu, M. L.; Wang, L.; Liang, H. H.; Wang, L. Y.; Song, Y. H. Iron-porphyrin-based covalent-organic frameworks for electrochemical sensing H2O2 and pH. Mater. Sci. Eng. C. 2020, 112, 110864.

[205]

He, N.; Zhu, X. L.; Liu, F. X.; Yu, R.; Xue, Z. H.; Liu, X. H. Rational design of FeS2-encapsulated covalent organic frameworks as stable and reusable nanozyme for dual-signal detection glutathione in cell lysates. Chem. Eng. J. 2022, 445, 136543.

[206]

Yue, J. Y.; Ding, X. L.; Wang, L.; Yang, R.; Bi, J. S.; Song, Y. W.; Yang, P.; Ma, Y.; Tang, B. Novel enzyme-functionalized covalent organic frameworks for the colorimetric sensing of glucose in body fluids and drinks. Mater. Chem. Front. 2021, 5, 3859–3866.

[207]

Liang, H. H.; Wang, L. Y.; Yang, Y. X.; Song, Y. H.; Wang, L. A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. Biosens. Bioelectron. 2021, 193, 113553.

[208]

Yildirim, O.; Derkus, B. Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors. J. Mater. Sci. 2020, 55, 3034–3044.

[209]

Guo, L. L.; Wang, Y. Y.; Pang, Y. H.; Shen, X. F.; Yang, N. C.; Ma, Y.; Zhang, Y. In situ growth of covalent organic frameworks TpBD on electrode for electrochemical determination of aflatoxin M1. J. Electroanal. Chem. 2021, 881, 114931.

[210]

Wang, L. J.; Gao, W. L.; Ng, S.; Pumera, M. Chiral protein-covalent organic framework 3D-printed structures as chiral biosensors. Anal. Chem. 2021, 93, 5277–5283.

[211]

Chen, R. Y.; Kan, L.; Xu, M. Y.; Zhang, G. Y.; Wang, M. H.; Cui, J.; Zhou, N.; He, L. H. Impedimetric aptasensor based on porphyrin-based covalent-organic framework for determination of diethylstilbestrol. Microchim. Acta 2022, 189, 229.

[212]

Liu, B. Q.; Guo, H.; Sun, L.; Pan, Z. L.; Peng, L. P.; Wang, M. Y.; Wu, N.; Chen, Y.; Wei, X. Q.; Yang, W. Electrochemical sensor based on covalent organic frameworks/MWCNT for simultaneous detection of catechol and hydroquinone. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 639, 128335.

[213]

Hao, Q.; Ren, X. R.; Chen, Y. C.; Zhao, C.; Xu, J. Y.; Wang, D.; Liu, H. A sweat-responsive covalent organic framework film for material-based liveness detection and sweat pore analysis. Nat. Commun. 2023, 14, 578.

[214]

Huang, W.; Jiang, Y.; Li, X.; Li, X. J.; Wang, J. Y.; Wu, Q.; Liu, X. K. Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures. ACS Appl. Mater. Interfaces 2013, 5, 8845–8849.

[215]

Zhang, Y.; Zhang, W. X.; Li, Q. Z.; Chen, C.; Zhang, Z. C. Design and fabrication of a novel humidity sensor based on ionic covalent organic framework. Sens. Actuators B: Chem. 2020, 324, 128733.

[216]

Jhulki, S.; Evans, A. M.; Hao, X. L.; Cooper, M. W.; Feriante, C. H.; Leisen, J.; Li, H.; Lam, D.; Hersam, M. C.; Barlow, S. Humidity sensing through reversible isomerization of a covalent organic framework. J. Am. Chem. Soc. 2020, 142, 783–791.

[217]

Jiang, S.; Meng, L. C.; Ma, W. Y.; Pan, G. C.; Zhang, W.; Zou, Y. C.; Liu, L. J.; Xu, B.; Tian, W. J. Dual-functional two-dimensional covalent organic frameworks for water sensing and harvesting. Mater. Chem. Front. 2021, 5, 4193–4201.

[218]

Zhang, Y. W.; Shen, X. C.; Feng, X.; Xia, H.; Mu, Y.; Liu, X. M. Covalent organic frameworks as pH responsive signaling scaffolds. Chem. Commun. 2016, 52, 11088–11091.

[219]

Chen, L.; He, L. W.; Ma, F. Y.; Liu, W.; Wang, Y. X.; Silver, M. A.; Chen, L. H.; Zhu, L.; Gui, D. X.; Diwu, J. et al. Covalent organic framework functionalized with 8-hydroxyquinoline as a dual-mode fluorescent and colorimetric pH sensor. ACS Appl. Mater. Interfaces 2018, 10, 15364–15368.

[220]

Das, P.; Mandal, S. K. Flexible and semi-flexible amide-hydrazide decorated fluorescent covalent organic frameworks as on-off pH responsive proton scavengers. ACS Appl. Mater. Interfaces 2021, 13, 14160–14168.

[221]

Jia, Y. T.; Shen, Y. T.; Zhu, Y. Y.; Wang, J. Covalent organic framework-based fluorescent nanoprobe for intracellular pH sensing and imaging. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2022, 272, 121002.

[222]

Ren, X. R.; Bai, B.; Zhang, Q. S.; Hao, Q.; Guo, Y. L.; Wan, L. J.; Wang, D. Constructing stable chromenoquinoline-based covalent organic frameworks via intramolecular povarov reaction. J. Am. Chem. Soc. 2022, 144, 2488–2494.

[223]

Yue, J. Y.; Song, L. P.; Ding, X. L.; Wang, Y. T.; Yang, P.; Ma, Y.; Tang, B. Ratiometric fluorescent pH sensor based on a tunable multivariate covalent organic framework. Anal. Chem. 2022, 94, 11062–11069.

Nano Research
Pages 162-195
Cite this article:
Zhang W, Liu S, Sun Q, et al. Synthesis of covalent organic framework materials and their application in the field of sensing. Nano Research, 2024, 17(1): 162-195. https://doi.org/10.1007/s12274-023-6027-x
Topics:

1720

Views

6

Crossref

8

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 11 May 2023
Revised: 14 July 2023
Accepted: 19 July 2023
Published: 14 September 2023
© Tsinghua University Press 2023
Return