Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cancer is a predominant culprit behind worldwide death and accounts for up to 10 million deaths every year. Chemotherapy is the primary therapeutic method employed for cancer in clinical settings and is essential in controlling tumor progression. Despite the advances in this field, tumor invasion and metastasis during treatment remain a significant cause of treatment failure. Nevertheless, the underlying mechanisms involving such a disappointing phenomenon are still not fully elucidated. Vinorelbine (VNB) extends the lifespan of many cancer patients in the clinic as an emerging chemotherapy drug approved by Food and Drug Administration (FDA). However, VNB-induced tumor metastasis is still an intractable problem, which may be closely related to the abnormal oxidative stress generated during VNB-mediated treatment. Hence, the study aims to construct a reductive nanosystem loaded with VNB, called VNB-VNP, to improve cancer cure rates and reduce tumor metastasis. With the reductive component vitamin E, VNB-VNP can effectively reduce oxidative stress and significantly outperform free VNB in preventing tumor progression. The transcriptome analysis shows that VNB-VNP can alleviate the over-expression of ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), which may be the main reason why VNB-VNP can inhibit tumor invasion and metastasis. Overall, the research designs a new platform for VNB treatment, which demonstrates promising efficacy in inhibiting neoplastic progression and identifies a new mechanism associated with VNB-induced tumor metastasis, which may offer several valuable references for enhancing chemotherapy efficacy in clinical anti-tumor therapy.
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79.
Pirker, R. Chemotherapy remains a cornerstone in the treatment of nonsmall cell lung cancer. Curr. Opin. Oncol. 2020, 32, 63–67.
Davern, M.; Lysaght, J. Cooperation between chemotherapy and immunotherapy in gastroesophageal cancers. Cancer Lett. 2020, 495, 89–99.
Heinhuis, K. M.; Ros, W.; Kok, M.; Steeghs, N.; Beijnen, J. H.; Schellens, J. H. M. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann. Oncol. 2019, 30, 219–235.
Shanbhag, S.; Ambinder, R. F. Hodgkin lymphoma: A review and update on recent progress. CA Cancer J. Clin. 2018, 68, 116–132.
Yapp, D. T.; Wong, M. Q.; Kyle, A. H.; Valdez, S. M.; Tso, J.; Yung, A.; Kozlowski, P.; Owen, D. A.; Buczkowski, A. K.; Chung, S. W. et al. The differential effects of metronomic gemcitabine and antiangiogenic treatment in patient-derived xenografts of pancreatic cancer: Treatment effects on metabolism, vascular function, cell proliferation, and tumor growth. Angiogenesis 2016, 19, 229–244.
Karagiannis, G. S.; Pastoriza, J. M.; Wang, Y. R.; Harney, A. S.; Entenberg, D.; Pignatelli, J.; Sharma, V. P.; Xue, E. A.; Cheng, E.; D'Alfonso, T. M. et al. Neoadjuvant chemotherapy induces breast cancer metastasis through a TM EM-mediated mechanism. Sci. Transl. Med. 2017, 9, eaan0026.
Zheng, X.; Zhao, Y. W.; Jia, Y.; Shao, D.; Zhang, F.; Sun, M. D.; Dawulieti, J.; Hu, H. Z.; Cui, L. Z.; Pan, Y. et al. Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials 2021, 271, 120716.
Molina, J. R.; Yang, P.; Cassivi, S. D.; Schild, S. E.; Adjei, A. A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 2008, 83, 584–594.
Jiang, M. S.; Yin, X. Y.; Qin, B.; Xuan, S. Y.; Yuan, X. L.; Yin, H.; Zhu, C. Q.; Li, X.; Yang, J.; Du, Y. et al. Inhibiting hypoxia and chemotherapy-induced cancer cell metastasis under a valid therapeutic effect by an assistance of biomimetic oxygen delivery. Mol. Pharmaceutics 2019, 16, 4530–4541.
Roma-Rodrigues, C.; Mendes, R.; Baptista, P. V.; Fernandes, A. R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 2019, 20, 840.
Ran, S. The role of TLR4 in chemotherapy-driven metastasis. Cancer Res. 2015, 75, 2405–2410.
Middleton, J. D.; Stover, D. G.; Hai, T. Chemotherapy-exacerbated breast cancer metastasis: A paradox explainable by dysregulated adaptive-response. Int. J. Mol. Sci. 2018, 19, 3333.
Kanojia, D.; Panek, W. K.; Cordero, A.; Fares, J.; Xiao, A. N.; Savchuk, S.; Kumar, K.; Xiao, T.; Pituch, K. C.; Miska, J. et al. BET inhibition increases βIII-tubulin expression and sensitizes metastatic breast cancer in the brain to vinorelbine. Sci. Transl. Med. 2020, 12, eaax2879.
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233.
Krajnak, S.; Decker, T.; Schollenberger, L.; Rosé, C.; Ruckes, C.; Fehm, T.; Thomssen, C.; Harbeck, N.; Schmidt, M. Phase II study of metronomic treatment with daily oral vinorelbine as first-line chemotherapy in patients with advanced/metastatic HR+/HER2-breast cancer resistant to endocrine therapy: VinoMetro-AGO-B-046. J. Cancer. Res. Clin. Oncol. 2021, 147, 3391–3400.
Okines, A. F. C.; Irfan, T.; Mohammed, K.; Ring, A.; Parton, M.; Kipps, E.; Johnston, S.; Turner, N. C. Vinorelbine after prior treatment with Eribulin for advanced breast cancer: A single-centre experience suggesting cross-resistance. Clin. Breast Cancer 2022, 22, e825–e831.
Poh, M. E.; Liam, C. K.; Mun, K. S.; Chai, C. S.; Wong, C. K.; Tan, J. L.; Loh, T. C.; Chin, K. K. Epithelial-to-mesenchymal transition (EMT) to sarcoma in recurrent lung adenosquamous carcinoma following adjuvant chemotherapy. Thorac. Cancer 2019, 10, 1841–1845.
Wu, Y. W.; Lin, C. F.; Lin, Y. S.; Su, W. C.; Chiu, W. H. Autophagy regulates vinorelbine sensitivity due to continued Keap1-mediated ROS generation in lung adenocarcinoma cells. Cell Death Discov. 2019, 4, 33.
Thomas-Schoemann, A.; Lemare, F.; Mongaret, C.; Bermudez, E.; Chéreau, C.; Nicco, C.; Dauphin, A.; Weill, B.; Goldwasser, F.; Batteux, F. et al. Bystander effect of vinorelbine alters antitumor immune response. Int. J. Cancer 2011, 129, 1511–1518.
Huynh, H.; Lee, L. Y.; Goh, K. Y.; Ong, R.; Hao, H. X.; Huang, A. L.; Wang, Y. Z.; Graus Porta, D.; Chow, P.; Chung, A. Infigratinib mediates vascular normalization, impairs metastasis, and improves chemotherapy in hepatocellular carcinoma. Hepatology 2019, 69, 943–958.
Walker, S. R.; Chaudhury, M.; Nelson, E. A.; Frank, D. A. Microtubule-targeted chemotherapeutic agents inhibit signal transducer and activator of transcription 3 (STAT3) signaling. Mol. Pharmacol. 2010, 78, 903–908.
Li, Y. Z.; Jin, W. X.; Yan, H.; Liu, H.; Wang, C. G. Development of intravenous lipid emulsion of vinorelbine based on drug -phospholipid complex technique. Int. J. Pharm. 2013, 454, 472–477.
Pal, K.; Madamsetty, V. S.; Dutta, S. K.; Mukhopadhyay, D. Co-delivery of everolimus and vinorelbine via a tumor-targeted liposomal formulation inhibits tumor growth and metastasis in RCC. Int. J. Nanomedicine 2019, 14, 5109–5123.
Martin, N. E.; D'Amico, A. V. Progress and controversies: Radiation therapy for prostate cancer. CA Cancer J. Clin. 2014, 64, 389–407.
Qiu, J. X.; Zhang, T.; Zhu, X. Y.; Yang, C.; Wang, Y. X.; Zhou, N.; Ju, B. X.; Zhou, T. H.; Deng, G. Z.; Qiu, C. W. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int. J. Mol. Sci. 2019, 21, 131.
Donohoe, C.; Senge, M. O.; Arnaut, L. G.; Gomes-da-Silva, L. C. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 188308.
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D'Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016, 8, 603–619.
Glass, S. B.; Gonzalez-Fajardo, L.; Beringhs, A. O.; Lu, X. L. Redox potential and ROS-mediated nanomedicines for improving cancer therapy. Antioxid. Redox Signal. 2019, 30, 747–761.
Sul, O. J.; Ra, S. W. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules 2021, 26, 6949.
Aggarwal, V.; Tuli, H. S.; Varol, A.; Thakral, F.; Yerer, M. B.; Sak, K.; Varol, M.; Jain, A.; Khan, M. A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules 2019, 9, 735.
Cheung, E. C.; DeNicola, G. M.; Nixon, C.; Blyth, K.; Labuschagne, C. F.; Tuveson, D. A.; Vousden, K. H. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer. Cancer Cell 2020, 37, 168–182.e4.
Panagopoulou, M.; Drosouni, A.; Fanidis, D.; Karaglani, M.; Balgkouranidou, I.; Xenidis, N.; Aidinis, V.; Chatzaki, E. ENPP2 promoter methylation correlates with decreased gene expression in breast cancer:Implementation as a liquid biopsy biomarker. Int. J Mol. Sci. 2022, 23, 3717.
Drosouni, A.; Panagopoulou, M.; Aidinis, V.; Chatzaki, E. Autotaxin in breast cancer: Role, epigenetic regulation and clinical implications. Cancers 2022, 14, 5437.
Salgado-Polo, F.; Borza, R.; Matsoukas, M. T.; Marsais, F.; Jagerschmidt, C.; Waeckel, L.; Moolenaar, W. H.; Ford, P.; Heckmann, B.; Perrakis, A. Autotaxin facilitates selective LPA receptor signaling. Cell Chem. Biol. 2023, 30, 69–84.e14.
Lee, S. C.; Fujiwara, Y.; Liu, J. X.; Yue, J. M.; Shimizu, Y.; Norman, D. D.; Wang, Y. H.; Tsukahara, R.; Szabo, E.; Patil, R. et al. Autotaxin and LPA1 and LPA5 receptors exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis. Mol. Cancer Res. 2015, 13, 174–185.
Luo, L. H.; Li, X.; Zhang, J. L.; Zhu, C. Q.; Jiang, M. S.; Luo, Z. Y.; Qin, B.; Wang, Y. Q.; Chen, B.; Du, Y. Z. et al. Enhanced immune memory through a constant photothermal-metabolism regulation for cancer prevention and treatment. Biomaterials 2021, 270, 120678.
Zhong, W. Z.; Wang, Q.; Mao, W. M.; Xu, S. T.; Wu, L.; Wei, Y. C.; Liu, Y. Y.; Chen, C.; Cheng, Y.; Yin, R. et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC: Final overall survival analysis of CTONG1104 phase III trial. J. Clin. Oncol. 2021, 39, 713–722.
Nakanishi, T.; Menju, T.; Nishikawa, S.; Takahashi, K.; Miyata, R.; Shikuma, K.; Sowa, T.; Imamura, N.; Hamaji, M.; Motoyama, H. et al. The synergistic role of ATP-dependent drug efflux pump and focal adhesion signaling pathways in vinorelbine resistance in lung cancer. Cancer Med. 2018, 7, 408–419.
Ortiz, M. A.; Mikhailova, T.; Li, X.; Porter, B. A.; Bah, A.; Kotula, L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun. Signal. 2021, 19, 67.
Eble, J. A.; Niland, S. The extracellular matrix in tumor progression and metastasis. Clin. Exp. Metastasis. 2019, 36, 171–198.
Chiu, W. H.; Luo, S. J.; Chen, C. L.; Cheng, J. H.; Hsieh, C. Y.; Wang, C. Y.; Huang, W. C.; Su, W. C.; Lin, C. F. Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 down regulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells. Biochem. Pharmacol. 2012, 83, 1159–1171.
Kleih, M.; Böpple, K.; Dong, M.; Gaißler, A.; Heine, S.; Olayioye, M. A.; Aulitzky, W. E.; Essmann, F. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 2019, 10, 851.
Glasauer, A.; Chandel, N. S. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 2014, 92, 90–101.
Guo, C.; Zhu, X. C.; Yuan, H. Y.; Liu, H. Y.; Zhang, Y.; Yin, T.; He, H. B.; Gou, J. X.; Tang, X. Chitosan-coated liposomes: The strategy to reduce intestinal toxicity and improve bioavailability of oral vinorelbine. AAPS PharmSciTech 2022, 23, 163.
Hemmings, D. G.; Brindley, D. N. Signalling by lysophosphatidate and its health implications. Essays. Biochem. 2020, 64, 547–563.
Amaral, R. F.; Geraldo, L. H. M.; Einicker-Lamas, M.; de S e Spohr, T. C. L.; Mendes, F.; Lima, F. R. S. Microglial lysophosphatidic acid promotes glioblastoma proliferation and migration via LPA1 receptor. J. Neurochem. 2021, 156, 499–512.
Ferraresi, A.; Esposito, A.; Girone, C.; Vallino, L.; Salwa, A.; Ghezzi, I.; Thongchot, S.; Vidoni, C.; Dhanasekaran, D. N.; Isidoro, C. Resveratrol contrasts LPA-induced ovarian cancer cell migration and platinum resistance by rescuing hedgehog-mediated autophagy. Cells 2021, 10, 3213.
Balijepalli, P.; Sitton, C. C.; Meier, K. E. Lysophosphatidic acid signaling in cancer cells: What makes LPA so special. Cells 2021, 10, 2059.
Yu, W. D.; Sun, G.; Li, J.; Xu, J.; Wang, X. C. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 2019, 452, 66–70.
D'Alterio, C.; Scala, S.; Sozzi, G.; Roz, L.; Bertolini, G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin. Cancer Biol. 2020, 60, 351–361.
Zhou, Q.; Li, Y. H.; Zhu, Y. H.; Yu, C.; Jia, H. B.; Bao, B. H.; Hu, H.; Xiao, C.; Zhang, J. Q.; Zeng, X. F. et al. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J. Control. Release 2018, 275, 67–77.
Valastyan, S.; Weinberg, R. A. Tumor metastasis: Molecular insights and evolving paradigms. Cell 2011, 147, 275–292.
Bakir, B.; Chiarella, A. M.; Pitarresi, J. R.; Rustgi, A. K. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 2020, 30, 764–776.
Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma, Y.; Hayashi, J. I. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008, 320, 661–664.
Mittler, R. ROS are good. Trends Plant Sci. 2017, 22, 11–19.
Nakamura, H.; Takada, K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021, 112, 3945–3952.
Kindler, H. L.; Novello, S.; Bearz, A.; Ceresoli, G. L.; Aerts, J. G. J. V.; Spicer, J.; Taylor, P.; Nackaerts, K.; Greystoke, A.; Jennens, R. et al. Anetumab Ravtansine versus vinorelbine in patients with relapsed, mesothelin-positive malignant pleural mesothelioma (ARCS-M): A randomised, open-label phase 2 trial. Lancet Oncol. 2022, 23, 540–552.
Wu, J. M.; Xu, Y.; Skill, N. J.; Sheng, H. M.; Zhao, Z. W.; Yu, M. G.; Saxena, R.; Maluccio, M. A. Autotaxin expression and its connection with the TNF-alpha-NF-κB axis in human hepatocellular carcinoma. Mol. Cancer 2010, 9, 71.