Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Classical spin liquid state in a rhombic lattice metal-organic framework

Sihua Feng1,§Chao Wang1,§()Jiyin Zhao2Xuguang Liu2Chaocheng Liu1Zeming Qi1Lei Chen3Huijuan Wang4Minghui Fan2Hengli Duan1()Wensheng Yan1()
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China

§ Sihua Feng and Chao Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The classical spin-liquid-like behavior has been confirmed in a geometrically frustrated antiferromagnetic Fe-metal-organic framework (Fe-MOF), in which Fe ions with S = 5/2 form a two-dimensional (2D) rhombic lattice. This research will endow 2D MOFs with great potential in geometrically frustrated systems, and will accelerate research into unconventional quantum phenomena.

Abstract

Discovering more and new geometrically frustrated systems remains an active point of inquiry in fundamental physics for the existence of unusual states of matter. Here, we report spin-liquid-like behavior in a two-dimensional (2D) rhombic lattice Fe-metal-organic framework (Fe-MOF) with frustrated antiferromagnetism. This Fe-MOF exhibits a high frustration factor f = |θCW|/TN ≥ 315, and its long-range magnetic order is suppressed down to 180 mK. Detailed theoretical calculations demonstrate strong antiferromagnetic coupling between adjacent Fe3+ ions, indicating the potential of a classical spin-liquid-like behavior. Notably, a T-linear heat capacity parameter, γ, originating from electronic contributions and with magnetic field independence up to 8 T, can be observed in the specific heat capacity measurements at low-temperature, providing further proof for the spin-liquid-like behavior. This work highlights the potential of MOF materials in geometrically frustrated systems, and will promote the research of exotic quantum physics phenomena.

Electronic Supplementary Material

Download File(s)
12274_2023_6036_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Chamorro, J. R.; McQueen, T. M.; Tran, T. T. Chemistry of quantum spin liquids. Chem. Rev. 2021, 121, 2898–2934.

[2]

Nakatsuji, S.; Nambu, Y.; Tonomura, H.; Sakai, O.; Jonas, S.; Broholm, C.; Tsunetsugu, H.; Qiu, Y. M.; Maeno, Y. Spin disorder on a triangular lattice. Science 2005, 309, 1697–1700.

[3]

Yan, S. M.; Huse, D. A.; White, S. R. Spin-liquid ground state of the S = 1/2 Kagome Heisenberg antiferromagnet. Science 2011, 332, 1173–1176.

[4]

Bramwell, S. T.; Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 2001, 294, 1495–1501.

[5]

Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 1987, 235, 1196–1198.

[6]

Nayak, C.; Simon, S. H.; Stern, A.; Freedman, M.; Das Sams, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083–1159.

[7]

Clark, L.; Sala, G.; Maharaj, D. D.; Stone, M. B.; Knight, K. S.; Telling, M. T. F.; Wang, X. Y.; Xu, X. H.; Kim, J.; Li, Y. B. et al. Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3. Nat. Phys. 2019, 15, 262–268.

[8]

Ramirez, A. P.; Hayashi, A.; Cava, R. J.; Siddharthan, R.; Shastry, B. S. Zero-point entropy in “spin ice”. Nature 1999, 399, 333–335.

[9]

Wang, Q. S.; Shen, Y.; Pan, B. Y.; Zhang, X. W.; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M. et al. Magnetic ground state of FeSe. Nat. Commun. 2016, 7, 12182.

[10]

Duan, C. R.; Sasma, K.; Maple, M. B.; Podlesnyak, A.; Zhu, J. X.; Si, Q. M.; Dai, P. C. Incommensurate spin fluctuations in the spin-triplet superconductor candidate UTe2. Phys. Rev. Lett. 2020, 125, 237003.

[11]

Pham, H. T. B.; Choi, J. Y.; Huang, S. F.; Wang, X. B.; Claman, A.; Stodolka, M.; Yazdi, S.; Sharma, S.; Zhang, W.; Park, J. Imparting functionality and enhanced surface area to a 2D electrically conductive MOF via macrocyclic linker. J. Am. Chem. Soc. 2022, 144, 10615–10621.

[12]

Su, Y. S.; Lamb, E. S.; Liepuoniute, I.; Chronister, A.; Stanton, A. L.; Guzman, P.; Pérez-Estrada, S.; Chang, T. Y.; Houk, K. N.; Garcia-Garibay, M. A. et al. Dipolar order in an amphidynamic crystalline metal-organic framework through reorienting linkers. Nat. Chem. 2021, 13, 278–283.

[13]

Ehrling, S.; Reynolds, E. M.; Bon, V.; Senkovska, I.; Gorelik, T. E.; Evans, J. D.; Rauche, M.; Mendt, M.; Weiss, M. S.; Pöppl, A. et al. Adaptive response of a metal-organic framework through reversible disorder-disorder transitions. Nat. Chem. 2021, 13, 568–574.

[14]

Jiang, W.; Liu, Z.; Mei, J. W.; Cui, B.; Liu, F. Dichotomy between frustrated local spins and conjugated electrons in a two-dimensional metal-organic framework. Nanoscale 2019, 11, 955–961.

[15]

Huang, X.; Zhang, S.; Liu, L. Y.; Yu, L.; Chen, G. F.; Xu, W.; Zhu, D. B. Superconductivity in a copper(II)-based coordination polymer with perfect Kagome structure. Angew. Chem., Int. Ed. 2018, 57, 146–150.

[16]

Zhao, M. W.; Wang, A. Z.; Zhang, X. M. Half-metallicity of a Kagome spin lattice: The case of a manganese bis-dithiolene monolayer. Nanoscale 2013, 5, 10404–10408.

[17]

Li, W. B.; Sun, L.; Qi, J. S.; Jarillo-Herrero, P.; Dincă, M.; Li, J. High temperature ferromagnetism in π-conjugated two-dimensional metal-organic frameworks. Chem. Sci. 2017, 8, 2859–2867.

[18]

Yu, M. H.; Dong, R. H.; Feng, X. L. Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications. J. Am. Chem. Soc. 2020, 142, 12903–12915.

[19]

Misumi, Y.; Yamaguchi, A.; Zhang, Z. Y.; Matsushita, T.; Wada, N.; Tsuchiizu, M.; Awaga, K. Quantum spin liquid state in a two-dimensional semiconductive metal-organic framework. J. Am. Chem. Soc. 2020, 142, 16513–16517.

[20]

Takenaka, T.; Ishihara, K.; Roppongi, M.; Miao, Y.; Mizukami, Y.; Makita, T.; Tsurumi, J.; Watanabe, S.; Takeya, J.; Yamashita, M. et al. Strongly correlated superconductivity in a copper-based metal-organic framework with a perfect Kagome lattice. Sci. Adv. 2021, 7, eabf3996.

[21]

Xiang, H. J.; Kan, E. J.; Wei, S. H.; Whangbo, M. H.; Gong, X. G. Predicting the spin-lattice order of frustrated systems from first principles. Phys. Rev. B 2011, 84, 224429.

[22]
Iqbal, Y.; Becca, F.; Sorella, S.; Poilblanc, D. Gapless spin-liquid phase in the Kagome spin = 1/2 Heisenberg antiferromagnet. Phys. Rev. B 2013, 87, 060405(R).
[23]

Kermarrec, E.; Kumar, R.; Bernard, G.; Hénaff, R.; Mendels, P.; Bert, F.; Paulose, P. L.; Hazra, B. K.; Koteswararao, B. Classical spin liquid state in the S = 5/2 Heisenberg Kagome antiferromagnet Li9Fe3(P2O7)3(PO4)2. Phys. Rev. Lett. 2021, 127, 157202.

[24]

Yunoki, S.; Sorella, S. Two spin liquid phases in the spatially anisotropic triangular Heisenberg model. Phys. Rev. B 2006, 74, 014408.

[25]

Coldea, R.; Tennant, D. A.; Tsvelik, A. M.; Tylczynski, Z. Experimental realization of a 2D fractional quantum spin liquid. Phys. Rev. Lett. 2001, 86, 1335–1338.

[26]

Shimizu, Y.; Miyagawa, K.; Kanoda, K.; Maesato, M.; Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 2003, 91, 107001.

[27]

Trumper, A. E. Spin-wave analysis to the spatially anisotropic Heisenberg antiferromagnet on a triangular lattice. Phys. Rev. B 1999, 60, 2987–2989.

[28]
Millange, F.; Guillou, N.; Walton, R. I.; Grenèche, J. M.; Margiolaki, I.; Férey, G. Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem. Commun. 2008, 4732–4734.
[29]

Westre, T. E.; Kennepohl, P.; Dewitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 1997, 119, 6297–6314.

[30]

Wasinger, E. C.; De Groot, F. M. F.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. L-edge X-ray absorption spectroscopy of non-heme iron sites:Experimental determination of differential orbital covalency. J. Am. Chem. Soc. 2003, 125, 12894–12906.

[31]

Crocombette, J. P.; Pollak, M.; Jollet, F.; Thromat, N.; Gautier-Soyer, M. X-ray absorption spectroscopy at the Fe L2, 3 threshold in iron oxides. Phys. Rev. B 1995, 52, 3143–3150.

[32]

Droubay, T.; Chambers, S. A. Surface-sensitive Fe 2p photoemission spectra for α-Fe2O3(0001): The influence of symmetry and crystal-field strength. Phys. Rev. B 2001, 64, 205414.

[33]

Thürmer, S.; Seidel, R.; Eberhardt, W.; Bradforth, S. E.; Winter, B. Ultrafast hybridization screening in Fe3+ aqueous solution. J. Am. Chem. Soc. 2011, 133, 12528–12535.

[34]

Mustonen, O. H. J.; Mutch, H. M.; Walker, H. C.; Baker, P. J.; Coomer, F. C.; Perry, R. S.; Pughe, C.; Stenning, G. B. G.; Liu, C.; Dutton, S. E. et al. Valence bond glass state in the 4d1 fcc antiferromagnet Ba2LuMoO6. npj Quantum Mater. 2022, 7, 74.

[35]

Erickson, A. S.; Misra, S.; Miller, G. J.; Gupta, R. R.; Schlesinger, Z.; Harrison, W. A.; Kim, J. M.; Fisher, I. R. Ferromagnetism in the Mott insulator Ba2NaO2O6. Phys. Rev. Lett. 2007, 99, 016404.

[36]

Bastien, G.; Roslova, M.; Haghighi, M. H.; Mehlawat, K.; Hunger, J.; Isaeva, A.; Doert, T.; Vojta, M.; Büchner, B.; Wolter, A. U. B. Spin-glass state and reversed magnetic anisotropy induced by Cr doping in the Kitaev magnet α-RuCl3. Phys. Rev. B 2019, 99, 214410.

[37]

Liu, J. B.; Yuan, L.; Li, X.; Li, B. Q.; Zhao, K.; Liao, H. J.; Li, Y. S. Gapless spin liquid behavior in a Kagome Heisenberg antiferromagnet with randomly distributed hexagons of alternate bonds. Phys. Rev. B 2022, 105, 024418.

[38]

Balents, L. Spin liquids in frustrated magnets. Nature 2010, 464, 199–208.

[39]

Yamashita, S.; Yamamoto, T.; Nakazawa, Y.; Tamura, M.; Kato, R. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nat. Commun. 2011, 2, 275.

[40]

Mustonen, O.; Vasala, S.; Sadrollahi, E.; Schmidt, K. P.; Baines, C.; Walker, H. C.; Terasaki, I.; Litterst, F. J.; Baggio-Saitovitch, E.; Karppinen, M. Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet perovskite induced by d10-d0 cation mixing. Nat. Commun. 2018, 9, 1085.

[41]

Yamashita, S.; Nakazawa, Y.; Oguni, M.; Oshima, Y.; Nojiri, H.; Shimizu, Y.; Miyagawa, K.; Kanoda, K. Thermodynamic properties of a spin-1/2 spin-liquid state in a κ-type organic salt. Nat. Phys. 2008, 4, 459–462.

[42]

Mizuno, A.; Shuku, Y.; Matsushita, M. M.; Tsuchiizu, M.; Hara, Y.; Wada, N.; Shimizu, Y.; Awaga, K. 3D spin-liquid state in an organic Hyperkagome lattice of Mott dimers. Phys. Rev. Lett. 2017, 119, 057201.

[43]

Dissanayaka Mudiyanselage, R. S.; Wang, H. Z.; Vilella, O.; Mourigal, M.; Kotliar, G.; Xie, W. W. LiYbSe2: Frustrated magnetism in the pyrochlore lattice. J. Am. Chem. Soc. 2022, 144, 11933–11937.

[44]

Cheng, J. G.; Li, G.; Balicas, L.; Zhou, J. S.; Goodenough, J. B.; Xu, C. K.; Zhou, H. D. High-pressure sequence of Ba3NiSb2O9 structural phases: New S = 1 quantum spin liquids based on Ni2+. Phys. Rev. Lett. 2011, 107, 197204.

[45]

Clark, L.; Orain, J. C.; Bert, F.; De Vries, M. A.; Aidoudi, F. H.; Morris, R. E.; Lightfoot, P.; Lord, J. S.; Telling, M. T. F. et al. Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride Kagome antiferromagnet [NH4]2[C7H14N][V7O6F18]. Phys. Rev. Lett. 2013, 110, 207208.

[46]

Okamoto, Y.; Nohara, M.; Aruga-Katori, H.; Takagi, H. Spin-liquid state in the S = 1/2 hyperkagome antiferromagnet Na4Ir3O8. Phys. Rev. Lett. 2007, 99, 137207.

[47]

Xu, Y.; Wang, L. S.; Huang, Y. Y.; Ni, J. M.; Zhao, C. C.; Dai, Y. F.; Pan, B. Y.; Hong, X. C.; Chauhan, P.; Koohpayeh, S. M. et al. Quantum critical magnetic excitations in spin-1/2 and spin-1 chain systems. Phys. Rev. X 2022, 12, 021020.

Nano Research
Pages 3407-3412
Cite this article:
Feng S, Wang C, Zhao J, et al. Classical spin liquid state in a rhombic lattice metal-organic framework. Nano Research, 2024, 17(4): 3407-3412. https://doi.org/10.1007/s12274-023-6036-9
Topics:
Metrics & Citations  
Article History
Copyright
Return