Discovering more and new geometrically frustrated systems remains an active point of inquiry in fundamental physics for the existence of unusual states of matter. Here, we report spin-liquid-like behavior in a two-dimensional (2D) rhombic lattice Fe-metal-organic framework (Fe-MOF) with frustrated antiferromagnetism. This Fe-MOF exhibits a high frustration factor f = |θCW|/TN ≥ 315, and its long-range magnetic order is suppressed down to 180 mK. Detailed theoretical calculations demonstrate strong antiferromagnetic coupling between adjacent Fe3+ ions, indicating the potential of a classical spin-liquid-like behavior. Notably, a T-linear heat capacity parameter, γ, originating from electronic contributions and with magnetic field independence up to 8 T, can be observed in the specific heat capacity measurements at low-temperature, providing further proof for the spin-liquid-like behavior. This work highlights the potential of MOF materials in geometrically frustrated systems, and will promote the research of exotic quantum physics phenomena.
Chamorro, J. R.; McQueen, T. M.; Tran, T. T. Chemistry of quantum spin liquids. Chem. Rev. 2021, 121, 2898–2934.
Nakatsuji, S.; Nambu, Y.; Tonomura, H.; Sakai, O.; Jonas, S.; Broholm, C.; Tsunetsugu, H.; Qiu, Y. M.; Maeno, Y. Spin disorder on a triangular lattice. Science 2005, 309, 1697–1700.
Yan, S. M.; Huse, D. A.; White, S. R. Spin-liquid ground state of the S = 1/2 Kagome Heisenberg antiferromagnet. Science 2011, 332, 1173–1176.
Bramwell, S. T.; Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 2001, 294, 1495–1501.
Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 1987, 235, 1196–1198.
Nayak, C.; Simon, S. H.; Stern, A.; Freedman, M.; Das Sams, S. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083–1159.
Clark, L.; Sala, G.; Maharaj, D. D.; Stone, M. B.; Knight, K. S.; Telling, M. T. F.; Wang, X. Y.; Xu, X. H.; Kim, J.; Li, Y. B. et al. Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3. Nat. Phys. 2019, 15, 262–268.
Ramirez, A. P.; Hayashi, A.; Cava, R. J.; Siddharthan, R.; Shastry, B. S. Zero-point entropy in “spin ice”. Nature 1999, 399, 333–335.
Wang, Q. S.; Shen, Y.; Pan, B. Y.; Zhang, X. W.; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M. et al. Magnetic ground state of FeSe. Nat. Commun. 2016, 7, 12182.
Duan, C. R.; Sasma, K.; Maple, M. B.; Podlesnyak, A.; Zhu, J. X.; Si, Q. M.; Dai, P. C. Incommensurate spin fluctuations in the spin-triplet superconductor candidate UTe2. Phys. Rev. Lett. 2020, 125, 237003.
Pham, H. T. B.; Choi, J. Y.; Huang, S. F.; Wang, X. B.; Claman, A.; Stodolka, M.; Yazdi, S.; Sharma, S.; Zhang, W.; Park, J. Imparting functionality and enhanced surface area to a 2D electrically conductive MOF via macrocyclic linker. J. Am. Chem. Soc. 2022, 144, 10615–10621.
Su, Y. S.; Lamb, E. S.; Liepuoniute, I.; Chronister, A.; Stanton, A. L.; Guzman, P.; Pérez-Estrada, S.; Chang, T. Y.; Houk, K. N.; Garcia-Garibay, M. A. et al. Dipolar order in an amphidynamic crystalline metal-organic framework through reorienting linkers. Nat. Chem. 2021, 13, 278–283.
Ehrling, S.; Reynolds, E. M.; Bon, V.; Senkovska, I.; Gorelik, T. E.; Evans, J. D.; Rauche, M.; Mendt, M.; Weiss, M. S.; Pöppl, A. et al. Adaptive response of a metal-organic framework through reversible disorder-disorder transitions. Nat. Chem. 2021, 13, 568–574.
Jiang, W.; Liu, Z.; Mei, J. W.; Cui, B.; Liu, F. Dichotomy between frustrated local spins and conjugated electrons in a two-dimensional metal-organic framework. Nanoscale 2019, 11, 955–961.
Huang, X.; Zhang, S.; Liu, L. Y.; Yu, L.; Chen, G. F.; Xu, W.; Zhu, D. B. Superconductivity in a copper(II)-based coordination polymer with perfect Kagome structure. Angew. Chem., Int. Ed. 2018, 57, 146–150.
Zhao, M. W.; Wang, A. Z.; Zhang, X. M. Half-metallicity of a Kagome spin lattice: The case of a manganese bis-dithiolene monolayer. Nanoscale 2013, 5, 10404–10408.
Li, W. B.; Sun, L.; Qi, J. S.; Jarillo-Herrero, P.; Dincă, M.; Li, J. High temperature ferromagnetism in π-conjugated two-dimensional metal-organic frameworks. Chem. Sci. 2017, 8, 2859–2867.
Yu, M. H.; Dong, R. H.; Feng, X. L. Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications. J. Am. Chem. Soc. 2020, 142, 12903–12915.
Misumi, Y.; Yamaguchi, A.; Zhang, Z. Y.; Matsushita, T.; Wada, N.; Tsuchiizu, M.; Awaga, K. Quantum spin liquid state in a two-dimensional semiconductive metal-organic framework. J. Am. Chem. Soc. 2020, 142, 16513–16517.
Takenaka, T.; Ishihara, K.; Roppongi, M.; Miao, Y.; Mizukami, Y.; Makita, T.; Tsurumi, J.; Watanabe, S.; Takeya, J.; Yamashita, M. et al. Strongly correlated superconductivity in a copper-based metal-organic framework with a perfect Kagome lattice. Sci. Adv. 2021, 7, eabf3996.
Xiang, H. J.; Kan, E. J.; Wei, S. H.; Whangbo, M. H.; Gong, X. G. Predicting the spin-lattice order of frustrated systems from first principles. Phys. Rev. B 2011, 84, 224429.
Kermarrec, E.; Kumar, R.; Bernard, G.; Hénaff, R.; Mendels, P.; Bert, F.; Paulose, P. L.; Hazra, B. K.; Koteswararao, B. Classical spin liquid state in the S = 5/2 Heisenberg Kagome antiferromagnet Li9Fe3(P2O7)3(PO4)2. Phys. Rev. Lett. 2021, 127, 157202.
Yunoki, S.; Sorella, S. Two spin liquid phases in the spatially anisotropic triangular Heisenberg model. Phys. Rev. B 2006, 74, 014408.
Coldea, R.; Tennant, D. A.; Tsvelik, A. M.; Tylczynski, Z. Experimental realization of a 2D fractional quantum spin liquid. Phys. Rev. Lett. 2001, 86, 1335–1338.
Shimizu, Y.; Miyagawa, K.; Kanoda, K.; Maesato, M.; Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 2003, 91, 107001.
Trumper, A. E. Spin-wave analysis to the spatially anisotropic Heisenberg antiferromagnet on a triangular lattice. Phys. Rev. B 1999, 60, 2987–2989.
Westre, T. E.; Kennepohl, P.; Dewitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 1997, 119, 6297–6314.
Wasinger, E. C.; De Groot, F. M. F.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. L-edge X-ray absorption spectroscopy of non-heme iron sites:Experimental determination of differential orbital covalency. J. Am. Chem. Soc. 2003, 125, 12894–12906.
Crocombette, J. P.; Pollak, M.; Jollet, F.; Thromat, N.; Gautier-Soyer, M. X-ray absorption spectroscopy at the Fe L2, 3 threshold in iron oxides. Phys. Rev. B 1995, 52, 3143–3150.
Droubay, T.; Chambers, S. A. Surface-sensitive Fe 2p photoemission spectra for α-Fe2O3(0001): The influence of symmetry and crystal-field strength. Phys. Rev. B 2001, 64, 205414.
Thürmer, S.; Seidel, R.; Eberhardt, W.; Bradforth, S. E.; Winter, B. Ultrafast hybridization screening in Fe3+ aqueous solution. J. Am. Chem. Soc. 2011, 133, 12528–12535.
Mustonen, O. H. J.; Mutch, H. M.; Walker, H. C.; Baker, P. J.; Coomer, F. C.; Perry, R. S.; Pughe, C.; Stenning, G. B. G.; Liu, C.; Dutton, S. E. et al. Valence bond glass state in the 4d1 fcc antiferromagnet Ba2LuMoO6. npj Quantum Mater. 2022, 7, 74.
Erickson, A. S.; Misra, S.; Miller, G. J.; Gupta, R. R.; Schlesinger, Z.; Harrison, W. A.; Kim, J. M.; Fisher, I. R. Ferromagnetism in the Mott insulator Ba2NaO2O6. Phys. Rev. Lett. 2007, 99, 016404.
Bastien, G.; Roslova, M.; Haghighi, M. H.; Mehlawat, K.; Hunger, J.; Isaeva, A.; Doert, T.; Vojta, M.; Büchner, B.; Wolter, A. U. B. Spin-glass state and reversed magnetic anisotropy induced by Cr doping in the Kitaev magnet α-RuCl3. Phys. Rev. B 2019, 99, 214410.
Liu, J. B.; Yuan, L.; Li, X.; Li, B. Q.; Zhao, K.; Liao, H. J.; Li, Y. S. Gapless spin liquid behavior in a Kagome Heisenberg antiferromagnet with randomly distributed hexagons of alternate bonds. Phys. Rev. B 2022, 105, 024418.
Balents, L. Spin liquids in frustrated magnets. Nature 2010, 464, 199–208.
Yamashita, S.; Yamamoto, T.; Nakazawa, Y.; Tamura, M.; Kato, R. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nat. Commun. 2011, 2, 275.
Mustonen, O.; Vasala, S.; Sadrollahi, E.; Schmidt, K. P.; Baines, C.; Walker, H. C.; Terasaki, I.; Litterst, F. J.; Baggio-Saitovitch, E.; Karppinen, M. Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet perovskite induced by d10-d0 cation mixing. Nat. Commun. 2018, 9, 1085.
Yamashita, S.; Nakazawa, Y.; Oguni, M.; Oshima, Y.; Nojiri, H.; Shimizu, Y.; Miyagawa, K.; Kanoda, K. Thermodynamic properties of a spin-1/2 spin-liquid state in a κ-type organic salt. Nat. Phys. 2008, 4, 459–462.
Mizuno, A.; Shuku, Y.; Matsushita, M. M.; Tsuchiizu, M.; Hara, Y.; Wada, N.; Shimizu, Y.; Awaga, K. 3D spin-liquid state in an organic Hyperkagome lattice of Mott dimers. Phys. Rev. Lett. 2017, 119, 057201.
Dissanayaka Mudiyanselage, R. S.; Wang, H. Z.; Vilella, O.; Mourigal, M.; Kotliar, G.; Xie, W. W. LiYbSe2: Frustrated magnetism in the pyrochlore lattice. J. Am. Chem. Soc. 2022, 144, 11933–11937.
Cheng, J. G.; Li, G.; Balicas, L.; Zhou, J. S.; Goodenough, J. B.; Xu, C. K.; Zhou, H. D. High-pressure sequence of Ba3NiSb2O9 structural phases: New S = 1 quantum spin liquids based on Ni2+. Phys. Rev. Lett. 2011, 107, 197204.
Clark, L.; Orain, J. C.; Bert, F.; De Vries, M. A.; Aidoudi, F. H.; Morris, R. E.; Lightfoot, P.; Lord, J. S.; Telling, M. T. F. et al. Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride Kagome antiferromagnet [NH4]2[C7H14N][V7O6F18]. Phys. Rev. Lett. 2013, 110, 207208.
Okamoto, Y.; Nohara, M.; Aruga-Katori, H.; Takagi, H. Spin-liquid state in the S = 1/2 hyperkagome antiferromagnet Na4Ir3O8. Phys. Rev. Lett. 2007, 99, 137207.
Xu, Y.; Wang, L. S.; Huang, Y. Y.; Ni, J. M.; Zhao, C. C.; Dai, Y. F.; Pan, B. Y.; Hong, X. C.; Chauhan, P.; Koohpayeh, S. M. et al. Quantum critical magnetic excitations in spin-1/2 and spin-1 chain systems. Phys. Rev. X 2022, 12, 021020.