AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Coordinatively unsaturated cobalt single-atom nanozymes for visual pesticides detection by smartphone-based platform

Fangning Liu§Zhe Li§Hengya WeiPeng XuGe KangShicheng ZhuTingting WangRuxue HeChuanxia Chen( )Yizhong Lu( )
School of Materials Science and Engineering, University of Jinan, Jinan 250022, China

§ Fangning Liu and Zhe Li contributed equally to this work.

Show Author Information

Graphical Abstract

Enzyme-like activity is fine-tuned by modulating the ligand environment of single-atom catalysts and a paper/smartphone sensor for organophosphorus pesticides was successfully constructed based on SA-CoN3 unsaturated ligands.

Abstract

By adjusting the coordination environment of single-atom catalysts, the enzyme-like activity can be finely tuned for highly sensitive biosensing. Herein, we demonstrated that coordinatively unsaturated cobalt-nitrogen sites doped within porous carbon (SA-CoN3) could serve as highly efficient oxidase mimic. Compared with the typical planar four-coordination structure (SA-CoN4), the as-obtained single-atom Co nanozymes anchored by three nitrogen atoms are found to display much higher oxidase-like catalytic efficiency. Combined theoretical and experimental analysis revealed that the coordinatively unsaturated Co sites could facilitate adsorption and activation of O2 molecule and thus improve their oxidase-like activity. Based on the enhanced oxidase-like activity of SA-CoN3, a paper/smartphone sensor for organophosphorus pesticides (OPs) was successfully constructed and used to quantify glyphosate in environmental and food samples with a low detection limit of 0.66 μM. This work not only highlights the important role of coordination unsaturation of SA nanozymes for promoting oxidase-like activity, but also provides an easy and cost-effective way to conduct effective quantification of OPs in the field.

Electronic Supplementary Material

Download File(s)
12274_2023_6039_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Yan, X.; Li, H.; Yan, Y.; Su, X. Selective detection of parathion-methyl based on near-infrared CuInS2 quantum dots. Food Chem. 2015, 173, 179–184.

[2]

Chen, G.; Liu, G.; Jia, H.; Cui, X.; Wang, Y.; Li, D.; Zheng, W.; She, Y.; Xu, D.; Huang, X.; Abd El-Aty, A. M.; Sun, J.; Liu, H.; Zou, Y.; Wang, J.; Jin, M.; Hammock, B. D. A sensitive bio-barcode immunoassay based on bimetallic Au@Pt nanozyme for detection of organophosphate pesticides in various agro-products. Food Chem. 2021, 362, 130118.

[3]

Thistle, J. E.; Ramos, A.; Roell, K. R.; Choi, G.; Manley, C. K.; Hall, A. M.; Villanger, G. D.; Cequier, E.; Sakhi, A. K.; Thomsen, C.; Zeiner, P.; Reichborn-Kjennerud, T.; Øvergaard, K. R.; Herring, A.; Aase, H.; Engel, S. M. Prenatal organophosphorus pesticide exposure and executive function in preschool-aged children in the norwegian mother, father and child cohort study (MoBa). Environ. Res. 2022, 212, 113555.

[4]

Maggi, F.; Tang, F. H. M.; Black, A. J.; Marks, G. B.; McBratney, A. The pesticide health risk index-an application to the world's countries. Sci. Total Environ. 2021, 801, 149731.

[5]

Catalá-Icardo, M.; Lahuerta-Zamora, L.; Torres-Cartas, S.; Meseguer-Lloret, S. Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium(IV). J. Chromatogr. A 2014, 1341, 31–40.

[6]

Wang, J.; Zhang, J.; Wang, J.; Fang, G.; Liu, J.; Wang, S. Fluorescent peptide probes for organophosphorus pesticides detection. J. Hazard. Mater. 2020, 389, 122074.

[7]

Chen, J.; Zhang, W.-T.; Shu, Y.; Ma, X.-H.; Cao, X.-Y. Detection of organophosphorus pesticide residues in leaf lettuce and cucumber through molecularly imprinted solid-phase extraction coupled to gas chromatography. Food Anal. Methods 2017, 10, 3452–3461.

[8]

Zheng, Q.; Chen, Y.; Fan, K.; Wu, J.; Ying, Y. Exploring pralidoxime chloride as a universal electrochemical probe for organophosphorus pesticides detection. Anal. Chim. Acta 2017, 982, 78–83.

[9]

Karbelkar, A. A.; Reynolds, E. E.; Ahlmark, R.; Furst, A. L. A microbial electrochemical technology to detect and degrade organophosphate pesticides. ACS Cent. Sci. 2021, 7, 1718–1727.

[10]

Li, Z.; Liu, W.; Ni, P.; Zhang, C.; Wang, B.; Duan, G.; Chen, C.; Jiang, Y.; Lu, Y. Carbon dots confined in N-doped carbon as peroxidase-like nanozyme for detection of gastric cancer relevant D-amino acids. Chem. Eng. J. 2022, 428, 131396.

[11]

Chen, T.; Zhou, D.; Hou, S.; Li, Y.; Liu, Y.; Zhang, M.; Zhang, G.; Xu, H. Designing hierarchically porous single atoms of Fe-N5 catalytic sites with high oxidase-like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 2022, 94, 15270–15279.

[12]

Chen, C.; Zhao, D.; Jiang, Y.; Ni, P.; Zhang, C.; Wang, B.; Yang, F.; Lu, Y.; Sun, J. Logically regulating peroxidase-like activity of gold nanoclusters for sensing phosphate-containing metabolites and alkaline phosphatase activity. Anal. Chem. 2019, 91, 15017–15024.

[13]

Li, H.; Sun, M.; Gu, H.; Huang, J.; Wang, G.; Tan, R.; Wu, R.; Zhang, X.; Liu, S.; Zheng, L.; Chen, W.; Chen, Z. Peroxidase-like FeCoZn triple-atom catalyst-based electronic tongue for colorimetric discrimination of food preservatives. Small 2023, 19, 2207036.

[14]

Jin, X.; Feng, X.; Wang, G.; Tan, R.; Peng, Y.; Zheng, L.; Chen, W.; Chen, Z. Zn-Y dual atomic site catalyst featuring metal–metal interactions as a nanozyme with peroxidase-like activity. J. Mater. Chem. 2023, 11, 2326–2333.

[15]

Chen, C.; Zhao, D.; Sun, J.; Yang, X. Colorimetric logic gate for pyrophosphate and pyrophosphatase via regulating the catalytic capability of horseradish peroxidase. ACS Appl. Mater. Interfaces 2016, 8, 29529–29535.

[16]

Liu, W.; Chu, L.; Zhang, C.; Ni, P.; Jiang, Y.; Wang, B.; Lu, Y.; Chen, C. Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chem. Eng. J. 2021, 415, 128876.

[17]

Feng, X.; Qin, Y.; Sui, R.; Wang, G.; Zhang, X.; Liu, X.; Pei, J.; Liu, D.; Chen, Z. CH3I sensing using yttrium single atom-doped perovskite nanocrystals. Nano Res. 2023, 16, 10429–10435.

[18]

Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[19]

Jiang, B.; Duan, D.; Gao, L.; Zhou, M.; Fan, K.; Tang, Y.; Xi, J.; Bi, Y.; Tong, Z.; Gao, G. F.; Xie, N.; Tang, A.; Nie, G.; Liang, M.; Yan, X. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[20]

Liu, Y.; Wang, B.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D.; Li, Y. Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single pd atom sites. Angew. Chem. Int. Ed. 2021, 60, 22522–22528.

[21]

Zhang, C.; Chen, C.; Zhao, D.; Kang, G.; Liu, F.; Yang, F.; Lu, Y.; Sun, J. Multienzyme cascades based on highly efficient metal-nitrogen-carbon nanozymes for construction of versatile bioassays. Anal. Chem. 2022, 94, 3485–3493.

[22]

Xu, W.; Song, W.; Kang, Y.; Jiao, L.; Wu, Y.; Chen, Y.; Cai, X.; Zheng, L.; Gu, W.; Zhu, C. Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal. Chem. 2021, 93, 12758–12766.

[23]

Jiao, L.; Kang, Y.; Chen, Y.; Wu, N.; Wu, Y.; Xu, W.; Wei, X.; Wang, H.; Gu, W.; Zheng, L.; Song, W.; Zhu, C. Unsymmetrically coordinated single Fe-N3S1 sites mimic the function of peroxidase. Nano Today 2021, 40, 101261.

[24]

Huang, J.; Gu, H.; Wang, G.; Wu, R.; Sun, M.; Chen, Z. Visual sensor arrays for distinction of phenolic acids based on two single-atom nanozymes. Anal. Chem. 2023, 95, 9107–9115.

[25]

Chen, Y.; Wang, P.; Hao, H.; Hong, J.; Li, H.; Ji, S.; Li, A.; Gao, R.; Dong, J.; Han, X.; Liang, M.; Wang, D.; Li, Y. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[26]

Kim, M. S.; Lee, J.; Kim, H. S.; Cho, A.; Shim, K. H.; Le, T. N.; An, S. S. A.; Han, J. W.; Kim, M. I.; Lee, J. Heme cofactor-resembling Fe–N single site embedded graphene as nanozymes to selectively detect H2O with high sensitivity. Adv. Funct. Mater. 2020, 30, 1905410.

[27]

Zhu, N.; Liu, C.; Liu, R.; Niu, X.; Xiong, D.; Wang, K.; Yin, D.; Zhang, Z. Biomimic nanozymes with tunable peroxidase-like activity based on the confinement effect of metal–organic frameworks (MOFs) for biosensing. Anal. Chem. 2022, 94, 4821–4830.

[28]

Jiao, L.; Wu, J.; Zhong, H.; Zhang, Y.; Xu, W.; Wu, Y.; Chen, Y.; Yan, H.; Zhang, Q.; Gu, W.; Gu, L.; Beckman, S. P.; Huang, L.; Zhu, C. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.

[29]

Ding, S.; Barr, J. A.; Lyu, Z.; Zhang, F.; Wang, M.; Tieu, P.; Li, X.; Engelhard, M. H.; Feng, Z.; Beckman, S. P.; Pan, X.; Li, J.-C.; Du, D.; Lin, Y. Effect of phosphorus modulation in iron single-atom catalysts for peroxidase mimicking. Adv. Mater. 2023, n/a, 2209633.

[30]

Cho, J.; Lim, T.; Kim, H.; Meng, L.; Kim, J.; Lee, S.; Lee, J. H.; Jung, G. Y.; Lee, K. S.; Vines, F.; Illas, F.; Exner, K. S.; Joo, S. H.; Choi, C. H. Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis. Nat. Commun. 2023, 14, 3233.

[31]

Cao, J.; Wang, M.; Yu, H.; She, Y.; Cao, Z.; Ye, J.; Abd El-Aty, A. M.; Hacimuftuoglu, A.; Wang, J.; Lao, S. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides. J. Agric. Food. Chem. 2020, 68, 7298–7315.

[32]

Han, Y.; Quan, K.; Chen, J.; Qiu, H. Advances and prospects on acid phosphatase biosensor. Biosens. Bioelectron. 2020, 170, 112671.

[33]

Van Dyk, J. S.; Pletschke, B. Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 2011, 82, 291–307.

[34]

Liu, P.; Zhao, M.; Zhu, H.; Zhang, M.; Li, X.; Wang, M.; Liu, B.; Pan, J.; Niu, X. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles. J. Hazard. Mater. 2022, 423, 127077.

[35]

Liu, H.; Guo, H.; Liu, B.; Liang, M.; Lv, Z.; Adair, K. R.; Sun, X. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480.

[36]

Shin, D.; Choun, M.; Ham, H. C.; Lee, J. K.; Lee, J. A graphitic edge plane rich meso-porous carbon anode for alkaline water electrolysis. PCCP 2017, 19, 21987–21995.

[37]

Luo, X.; Han, W.; Du, W.; Huang, Z.; Jiang, Y.; Zhang, Y. Ordered mesoporous carbon with atomically dispersed Fe-Nx as oxygen reduction reaction electrocatalyst in air-cathode microbial fuel cells. J. Power Sources 2020, 469, 228184.

[38]

Luo, J.; Yang, L.; Li, T.; Yang, L.; Luo, X.; Crittenden, J. C. Three-dimensional electrode interface assembled from rGO nanosheets and carbon nanotubes for highly electrocatalytic oxygen reduction. Chem. Eng. J. 2019, 378, 122127.

[39]

Zhu, S.; Li, Z.; Zhang, F.; Liu, F.; Ni, P.; Chen, C.; Jiang, Y.; Lu, Y. Single-atom cobalt catalysts as highly efficient oxidase mimics for time-based visualization monitoring the TAC of skin care products. Chem. Eng. J. 2023, 456, 141053.

[40]

Liang, X.; Wang, D.; Zhao, Z.; Li, T.; Chen, Z.; Gao, Y.; Hu, C. Engineering the low-coordinated single cobalt atom to boost persulfate activation for enhanced organic pollutant oxidation. Appl. Catal. B: Environ. 2022, 303, 120877.

[41]

Li, Z.; Liu, F.; Chen, C.; Jiang, Y.; Ni, P.; Song, N.; Hu, Y.; Xi, S.; Liang, M.; Lu, Y. Regulating the N coordination environment of Co single-atom nanozymes for highly efficient oxidase mimics. Nano Lett. 2023, 23, 1505–1513.

[42]

Kang, G.; Liu, W.; Liu, F.; Li, Z.; Dong, X.; Chen, C.; Lu, Y. Single-atom Pt catalysts as oxidase mimic for p-benzoquinone and α-glucosidase activity detection. Chem. Eng. J. 2022, 449, 137855.

[43]

Zhu, D.; Zhang, M.; Pu, L.; Gai, P.; Li, F. Nitrogen-enriched conjugated polymer enabled metal-free carbon nanozymes with efficient oxidase-like activity. Small 2022, 18, 2104993.

[44]
Wang, S.; Li, Z.; Xia, M.; Zhao, X.; Chen, C.; Jiang, Y.; Ni, P.; Lu, Y. Atomically-precise Au24Ag1 clusterzymes with enhanced peroxidase-like activity for bioanalysis. Chem. Res. Chin. Univ. 2022, https://doi.org/10.1007/s40242-022-2259-7.
[45]

Zhao, X.; Li, Z.; Ding, Z.; Wang, S.; Lu, Y. Ultrathin porous Pd metallene as highly efficient oxidase mimics for colorimetric analysis. J. Colloid Interface Sci. 2022, 626, 296–304.

[46]

Wang, J.; Schipper, H. M.; Velly, A. M.; Mohit, S.; Gornitsky, M. Salivary biomarkers of oxidative stress: A critical review. Free Radical Biol. Med. 2015, 85, 95–104.

[47]

Lou, Z.; Zhao, S.; Wang, Q.; Wei, H. N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Anal. Chem. 2019, 91, 15267–15274.

[48]

Chen, Y.; Jiao, L.; Yan, H.; Xu, W.; Wu, Y.; Wang, H.; Gu, W.; Zhu, C. Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal. Chem. 2020, 92, 13518–13524.

[49]

Ni, P.; Liu, S.; Wang, B.; Chen, C.; Jiang, Y.; Zhang, C.; Chen, J.; Lu, Y. Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. J. Hazard. Mater. 2021, 411, 125106.

[50]

Mao, Y.; Jia, F.; Jing, T.; Li, T.; Jia, H.; He, W. Enhanced multiple enzymelike activity of PtPdCu trimetallic nanostructures for detection of Fe2+ and evaluation of antioxidant capability. ACS Sustainable Chem. Eng. 2021, 9, 569–579.

[51]

Chen, J.; Xu, F.; Zhang, Q.; Li, S. N-doped MoS2-nanoflowers as peroxidase-like nanozymes for total antioxidant capacity assay. Anal. Chim. Acta 2021, 1180, 338740.

[52]

Pellegrini, N.; Vitaglione, P.; Granato, D.; Fogliano, V. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: Merits and limitations. J. Sci. Food Agric. 2020, 100, 5064–5078.

[53]

Qin, X.; Liu, J.; Zhang, Z.; Li, J.; Yuan, L.; Zhang, Z.; Chen, L. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. TrAC Trends Anal. Chem. 2021, 143, 116371.

Nano Research
Pages 2298-2307
Cite this article:
Liu F, Li Z, Wei H, et al. Coordinatively unsaturated cobalt single-atom nanozymes for visual pesticides detection by smartphone-based platform. Nano Research, 2024, 17(4): 2298-2307. https://doi.org/10.1007/s12274-023-6039-6
Topics:

855

Views

14

Crossref

17

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 07 July 2023
Revised: 19 July 2023
Accepted: 22 July 2023
Published: 14 August 2023
© Tsinghua University Press 2023
Return