AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Iron-nickel alloy particles with N-doped carbon “armor” as a highly selective and long-lasting catalyst for the synthesis of N-benzylaniline molecules

Gang WangLongchao SunWanyi Liu( )Haijuan Zhan( )Shuxian Bi
College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
Show Author Information

Graphical Abstract

A scalable strategy for the convenient and rapid preparation of nitrogen-doped carbon-coated iron-based alloy catalysts was developed. The catalyst showed good results in the N-alkylation of benzyl alcohol with aniline (optimum yield: 99%, can be used more than 10 times).

Abstract

A scalable strategy for the convenient and rapid preparation of nitrogen-doped carbon-coated iron-based alloy catalysts was developed. By controlling the type and amount of metal salts in the precursor, various types of nitrogen-doped carbon-coated alloy catalysts can be prepared in a targeted manner. Fe2Ni2@CN materials with small particle sizes and relatively homogeneous basic sites showed promising results in the N-alkylation reaction of benzyl alcohol with aniline (optimum yield: 99%). It is worth noting that the catalyst can also be magnetically separated and recovered after the reaction, and its performance can be regenerated through simple calcination. Furthermore, it was confirmed by kinetic experiments that the activation of C–H at the benzyl alcohol benzylic position is the rate-determining step (RDS). According to density flooding theory calculations, Fe2Ni2@CN catalysts require less energy than other materials (Fe@CN and Ni@CN) for the RDS (dehydrogenation reaction) process. Therefore N-alkylation reactions are more easily carried out on Fe2Ni2@CN catalysts, which may be the reason for the best catalytic activity of Fe-Ni alloy materials. These carbon-coated alloy materials will show great potential in more types of heterogeneous catalysis.

Electronic Supplementary Material

Download File(s)
12274_2023_6041_MOESM1_ESM.pdf (4 MB)

References

[1]

Cosio, M. N.; Powers, D. C. Prospects and challenges for nitrogen-atom transfer catalysis. Nat. Rev. Chem. 2023, 7, 424–438.

[2]

Xue, W. X.; Zhu, Z. W.; Chen, S. X.; You, B.; Tang, C. H. Atomically dispersed Co-N/C catalyst for divergent synthesis of nitrogen-containing compounds from alkenes. J. Am. Chem. Soc. 2023, 145, 4142–4149.

[3]

Reed-Berendt, B. G.; Latham, D. E.; Dambatta, M. B.; Morrill, L. C. Borrowing hydrogen for organic synthesis. ACS Cent. Sci. 2021, 7, 570–585.

[4]

Corma, A.; Navas, J.; Sabater, M. J. Advances in one-pot synthesis through borrowing hydrogen catalysis. Chem. Rev. 2018, 118, 1410–1459.

[5]

Yao, W. W.; Li, R.; Chen, H.; Chen, M. K.; Luan, Y. X.; Wang, Y.; Yu, Z. X.; Ye, M. C. Ni-catalyzed hydroaminoalkylation of alkynes with amines. Nat. Commun. 2021, 12, 3800.

[6]

Ma, X. T.; Su, C. L.; Xu, Q. N-alkylation by hydrogen autotransfer reactions. Top Curr. Chem. (Cham) 2016, 374, 27.

[7]

Ma, Z.; Zhou, B.; Li, X. M.; Kadam, R. G.; Gawande, M. B.; Petr, M.; Zboril, R.; Beller, M.; Jagadeesh, R. V. Reusable Co-nanoparticles for general and selective N-alkylation of amines and ammonia with alcohols. Chem. Sci. 2022, 13, 111–117.

[8]

Stiniya, S.; Saranya, P. V.; Anilkumar, G. An overview of iron-catalyzed N-alkylation reactions. Appl. Organomet. Chem. 2021, 35, e6444.

[9]

Bains, A. K.; Kundu, A.; Yadav, S.; Adhikari, D. Borrowing hydrogen-mediated N-alkylation reactions by a well-defined homogeneous nickel catalyst. ACS Catal. 2019, 9, 9051–9059.

[10]

Patel, B.; Ranjan, R.; Chauhan, N. R.; Mukhopadhyay, S.; Choudhury, A. R.; Vyas, K. M. N-coordinated Ru(II) catalyzed solvent free N-alkylation of primary amines with alcohols through borrowing hydrogen strategy. New J. Chem. 2023, 47, 8305–8317.

[11]

Zhu, G. X.; Duan, Z. C.; Zhu, H. Y.; Ye, D. D.; Wang, D. W. Selective C–C bonds formation, N-alkylation and benzo[d]imidazoles synthesis by a recyclable zinc composite. Chin. Chem. Lett. 2022, 33, 266–270.

[12]

Prabha, D.; Pachisia, S.; Gupta, R. Cobalt mediated N-alkylation of amines by alcohols: Role of hydrogen bonding pocket. Inorg. Chem. Front. 2021, 8, 1599–1609.

[13]

Rojas-Buzo, S.; Concepción, P.; Corma, A.; Moliner, M.; Boronat, M. In-situ-generated active hf-hydride in zeolites for the tandem N-alkylation of amines with benzyl alcohol. ACS Catal. 2021, 11, 8049–8061.

[14]

Fu, W. Q.; Shen, R. S.; Bai, E. H.; Zhang, L.; Chen, Q.; Fang, Z. X.; Li, G. C.; Yi, X. F.; Zheng, A. M.; Tang, T. D. Reaction route and mechanism of the direct N-alkylation of sulfonamides on acidic mesoporous zeolite β-catalyst. ACS Catal. 2018, 8, 9043–9055.

[15]

Niu, F.; Tu, W. G.; Lu, X. X.; Chi, H. Q.; Zhu, H.; Zhu, X.; Wang, L.; Xiong, Y. J.; Yao, Y. F.; Zhou, Y. et al. Single Pd-Sx sites in situ coordinated on CdS surface as efficient hydrogen autotransfer shuttles for highly selective visible-light-driven C–N coupling. ACS Catal. 2022, 12, 4481–4490.

[16]

Zhu, H. H.; Wang, W. D.; Li, F.; Sun, X.; Li, B. Y.; Song, Q.; Kou, J. F.; Ma, K. X.; Ren, X. G.; Dong, Z. P. Facile preparation of ultrafine Pd nanoparticles anchored on covalent triazine frameworks catalysts for efficient N-alkylation. J. Colloid Interface Sci. 2022, 606, 1340–1351.

[17]

Liu, P.; Yang, J. Z.; Ai, Y.; Hao, S. S.; Chen, X. Z.; Li, F. Recyclable covalent triazine framework-supported iridium catalyst for the N-methylation of amines with methanol in the presence of carbonate. J. Catal. 2021, 396, 281–290.

[18]

Maji, M.; Chakrabarti, K.; Paul, B.; Roy, B. C.; Kundu, S. Ruthenium(II)-NNN-pincer-complex-catalyzed reactions between various alcohols and amines for sustainable C–N and C–C bond formation. Adv. Synth. Catal. 2018, 360, 722–729.

[19]

Wang, L.; Jv, X. C.; Wang, R. K.; Ma, L. Z.; Liu, J.; Sun, J. F.; Shi, T.; Zhao, L. M.; Zhang, X. K.; Wang, B. Highly selective synergistic N-alkylation of amines with ROH catalyzed by nickel-ruthenium. ACS Sustainable Chem. Eng. 2022, 10, 8342–8349.

[20]

Wang, J.; She, W.; Li, X. W.; Li, Z. B.; Li, J. F.; Mao, G. J.; Li, W. Z.; Li, G. M. A highly efficient Co-based catalyst fabricated by coordination-assisted impregnation strategy towards tandem catalytic functionalization of nitroarenes with various alcohols. J. Catal. 2021, 404, 462–474.

[21]

Chen, H.; Wang, Q. F.; Liu, T. T.; Chen, H. T.; Zhou, D.; Qu, F. B. Iron-catalyzed N-alkylation of aromatic amines via borrowing hydrogen strategy. J. Coord. Chem. 2021, 74, 877–884.

[22]

Pang, S. F.; Zhang, Y. J.; Su, Q.; Liu, F. F.; Xie, X.; Duan, Z. Y.; Zhou, F.; Zhang, P.; Wang, Y. B. Superhydrophobic nickel/carbon core–shell nanocomposites for the hydrogen transfer reactions of nitrobenzene and N-heterocycles. Green Chem. 2020, 22, 1996–2010.

[23]

Vellakkaran, M.; Singh, K.; Banerjee, D. An efficient and selective nickel-catalyzed direct N-alkylation of anilines with alcohols. ACS Catal. 2017, 7, 8152–8158.

[24]

Abdollahi, A.; Ghaffarinejad, A.; Arabi, M. Electrodeposition of Ni-Fe on graphite rod as an efficient and binder-free electrocatalyst for oxygen and hydrogen evolution reactions. J. Alloys Compd. 2023, 937, 168400.

[25]

Yang, Z. Z.; Zhu, L.; Jiang, S. S.; Zhu, C.; Xu, Q. H.; Lin, Y.; Chen, F. G.; Wang, Y. G. Nanoscale structural heterogeneity and magnetic properties of Fe-based amorphous alloys via Co and Ni additions. J. Alloys Compd. 2022, 904, 164067.

[26]

Yaqoob, L.; Noor, T.; Iqbal, N.; Nasir, H.; Zaman, N.; Talha, K. Electrochemical synergies of Fe-Ni bimetallic MOF CNTs catalyst for OER in water splitting. J. Alloys Compd. 2021, 850, 156583.

[27]

Zhang, J.; Liu, X. W.; Deng, L. D.; Liu, X. C.; Li, F. K.; Wang, R. Q.; Chen, C. A novel Ni-Co alloy catalyst derived from spinel. J. Alloys Compd. 2022, 925, 166600.

[28]

Shi, D. C.; Sadier, A.; Girardon, J. S.; Mamede, A. S.; Ciotonea, C.; Marinova, M.; Stievano, L.; Sougrati, M. T.; La Fontaine, C.; Paul, S. et al. Probing the core and surface composition of nanoalloy to rationalize its selectivity: Study of Ni-Fe/SiO2 catalysts for liquid-phase hydrogenation. Chem. Catal. 2022, 2, 1686–1708.

[29]

Ko, Y. J.; Han, M. H.; Kim, H.; Kim, J. Y.; Lee, W. H.; Kim, J.; Kwak, J. Y.; Kim, C. H.; Park, T. E.; Yu, S. H. et al. Unraveling Ni-Fe 2D nanostructure with enhanced oxygen evolution via in situ and operando spectroscopies. Chem Catal. 2022, 2, 2312–2327.

[30]

Zhang, Z. Y.; Tang, P. P.; Wen, H.; Wang, P. Bicontinuous nanoporous Ni-Fe alloy as a highly active catalyst for hydrazine electrooxidation. J. Alloys Compd. 2022, 906, 164370.

[31]

Putro, W. S.; Hara, T.; Ichikuni, N.; Shimazu, S. One-pot synthesis of aniline N-alkylation from benzyl alcohol over Cu-Fe catalyst. Appl. Catal. A: Gen. 2020, 602, 117519.

[32]

Sadier, A.; Paul, S.; Marceau, E.; Wojcieszak, R. Ni-Fe alloying enhances the efficiency of the maltose hydrogenation process: The role of surface species and kinetic study. Appl. Catal. B: Environ. 2022, 313, 121446.

[33]

Zhang, H.; Song, X. J.; Sun, H.; Lei, Z. Y.; Bao, S. X.; Zhao, C.; Hu, D. W.; Zhang, W. X.; Liu, J. Y.; Jia, M. J. Carbon-wrapped Fe-Ni bimetallic nanoparticle-catalyzed friedel-crafts acylation for green synthesis of aromatic ketones. Catal. Sci. Technol. 2021, 11, 7943–7954.

[34]

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

[35]

Fang, H.; Yang, J. H.; Wen, M.; Wu, Q. S. Nanoalloy materials for chemical catalysis. Adv. Mater. 2018, 30, 1705698.

[36]

Chen, C.; Zhang, Q. T.; Yang, H.; Yu, L. Establishing Fe–Cu interaction in a novel free-standing material to boost the catalytic activity for ligand-free Suzuki–Miyaura cross-couplings. J. Catal. 2022, 416, 176–185.

[37]

Chen, C.; Cao, K. H.; Wei, Z.; Zhang, Q. T.; Yu, L. Design and fabrication of the Fe/Cl-doped Al foil-supported copper nano-material as the high turnover number catalyst for Suzuki coupling. Mater. Lett. 2018, 226, 63–66.

[38]

Zhang, D. L.; Wei, Z.; Yu, L. Easily fabricated and recyclable Pd&Cu@Al catalyst for gram-scale phosphine-free Heck reactions with high TON. Sci. Bull. 2017, 62, 1325–1330.

[39]

Zhao, J. J.; He, Y. R.; Wang, F.; Zheng, W. T.; Huo, C. F.; Liu, X.; Jiao, H. J.; Yang, Y.; Li, Y. W.; Wen, X. D. Suppressing metal leaching in a supported Co/SiO2 catalyst with effective protectants in the hydroformylation reaction. ACS Catal. 2020, 10, 914–920.

[40]

Akbayrak, S.; Cakmak, G.; Öztürk, T.; Özkar, S. Rhodium(0), ruthenium(0) and palladium(0) nanoparticles supported on carbon-coated iron: Magnetically isolable and reusable catalysts for hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 2021, 46, 13548–13560.

[41]

Liu, Y.; Hou, B.; Chen, C. B.; Jia, L. T.; Ma, Z. Y.; Wang, Q.; Li, D. B. Carbon coated cobalt catalysts for direct synthesis of middle n-alkanes from syngas. Fuel 2022, 327, 124889.

[42]

Kang, S. F.; He, M. F.; Yin, C. C.; Xu, H. Y.; Cai, Q.; Wang, Y. G.; Cui, L. F. Graphitic carbon embedded with Fe/Ni nano-catalysts derived from bacterial precursor for efficient toluene cracking. Green Chem. 2020, 22, 1934–1943.

[43]

Shen, Y. F. Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J. Mater. Chem. A 2015, 3, 13114–13188.

[44]

Zhao, C.; Zhang, H.; Lei, Z. Y.; Miao, S. S.; Sun, H. L.; Sun, Y. T.; Zhang, W. X.; Jia, M. J. Graphitic carbon-wrapped iron nanoparticles derived from a melamine-modified metal-organic framework as efficient Friedel-Crafts acylation catalysts. Catal. Today 2022, 402, 220–227.

[45]

Huang, S. T.; Zhao, Z. J.; Wei, Z. Z.; Wang, M. X.; Chen, Y.; Wang, X. S.; Shao, F. J.; Zhong, X.; Li, X. N.; Wang, J. G. Targeted regulation of the selectivity of cascade synthesis towards imines/secondary amines by carbon-coated Co-based catalysts. Green. Chem. 2022, 24, 6945–6954.

[46]

Guo, R. X.; Zhang, X. Y.; Li, X. D.; Niu, D.; Sun, H. B. Porphyrin-MOF-derived carbon-encapsulated copper as a selective and leaching resistant catalyst for the hydrogenation of nitriles. J. Taiwan Inst. Chem. E. 2022, 140, 104561.

[47]

Song, C. S.; Wu, S. K.; Shen, X. P.; Miao, X. L.; Ji, Z. Y.; Yuan, A. H.; Xu, K. Q.; Liu, M. M.; Xie, X. L.; Kong, L. R. et al. Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions. J. Colloid Interface Sci. 2018, 524, 93–101.

[48]

Torabinejad, V.; Aliofkhazraei, M.; Assareh, S.; Allahyarzadeh, M. H.; Rouhaghdam, A. S. Electrodeposition of Ni-Fe alloys, composites, and nano coatings—A review. J. Alloys Compd. 2017, 691, 841–859.

[49]

Modak, A.; Mohan, R.; Rajavelu, K.; Cahan, R.; Bendikov, T.; Schechter, A. Metal-organic polymer-derived interconnected Fe-Ni Alloy by carbon nanotubes as an advanced design of urea oxidation catalysts. ACS Appl. Mater. Interfaces 2021, 13, 8461–8473.

[50]

Chieffi, G.; Giordano, C.; Antonietti, M.; Esposito, D. FeNi nanoparticles with carbon armor as sustainable hydrogenation catalysts: Towards biorefineries. J. Mater. Chem. A 2014, 2, 1159111596.

[51]

Li, M.; Wang, S. L.; Wang, X. Z.; Tian, X. L.; Wu, X.; Zhou, Y. T.; Hu, G. Z.; Feng, L. G. Structure evolution from Fe2Ni MIL MOF to carbon confined O-doped FeNi/FeF2 via partial fluorination for improved oxygen evolution reaction. Chem. Eng. J. 2022, 442, 136165.

[52]

Zheng, Y.; Qiao, S. Z. Metal-organic framework assisted synthesis of single-atom catalysts for energy applications. Nat. Sci. Rev. 2018, 5, 626–627.

[53]

Song, X.; Schrade, M.; Masó, N.; Finstad, T. G. Zn vacancy formation, Zn evaporation and decomposition of ZnSb at elevated temperatures: Influence on the microstructure and the electrical properties. J. Alloys Compd. 2017, 710, 762–770.

[54]

Wu, P. Y.; Lu, G. P.; Cai, C. Synthesis of an Fe-Pd bimetallic catalyst for N-alkylation of amines with alcohols via a hydrogen auto-transfer methodology. Green Chem. 2021, 23, 396–404.

[55]

Alshammari, A. S.; Natte, K.; Kalevaru, N. V.; Bagabas, A.; Jagadeesh, R. V. Scalable preparation of stable and reusable silica supported palladium nanoparticles as catalysts for N-alkylation of amines with alcohols. J. Catal. 2020, 382, 141–149.

[56]

Xia, S. X.; Nie, R. F.; Lu, X. Y.; Wang, L. N.; Chen, P.; Hou, Z. Y. Hydrogenolysis of glycerol over Cu0.4/Zn5.6−xMgxAl2O8.6 catalysts: The role of basicity and hydrogen spillover. J. Catal. 2012, 296, 1–11.

[57]

Zhang, W.; Zhang, R. Z.; Huang, Y. Q.; Yang, J. M. Effect of the synergetic interplay between the electrostatic interactions, size of the dye molecules, and adsorption sites of MIL-101(Cr) on the adsorption of organic dyes from aqueous solutions. Cryst. Growth Des. 2018, 18, 7533–7540.

[58]

Wang, Y. X.; Zhang, N. N.; Zhang, E.; Han, Y. H.; Qi, Z. H.; Ansorge-Schumacher, M. B.; Ge, Y.; Wu, C. Z. Heterogeneous metal-organic-framework-based biohybrid catalysts for cascade reactions in organic solvent. Chem.—Eur. J. 2019, 25, 1716–1721.

[59]

Luo, N. H.; Zhong, Y. H.; Wen, H. L.; Luo, R. S. Cyclometalated iridium complex-catalyzed N-alkylation of amines with alcohols via borrowing hydrogen in aqueous media. ACS Omega 2020, 5, 27723–27732.

[60]

Chen, Y.; Chen, C.; Liu, Y. H.; Yu, L. Probing the effect of nitrate anion in CAN: An additional opportunity to reduce the catalyst loading for aerobic oxidations. Chin. Chem. Lett. 2023, 34, 108489.

[61]

Li, W.; Wang, F.; Shi, Y. C.; Yu, L. Polyaniline-supported tungsten-catalyzed oxidative deoximation reaction with high catalyst turnover number. Chin. Chem. Lett. 2023, 34, 107505.

[62]

Wang, Y. Z.; Furukawa, S.; Yan, N. Identification of an active NiCu catalyst for nitrile synthesis from alcohol. ACS Catal. 2019, 9, 6681–6691.

[63]

Wang, H.; Xu, D. Y.; Guan, E. J.; Wang, L.; Zhang, J.; Wang, C. T.; Wang, S.; Xu, H.; Meng, X. J.; Yang, B. et al. Atomically dispersed Ru on manganese oxide catalyst boosts oxidative cyanation. ACS Catal. 2020, 10, 6299–6308.

[64]

Lu, G. P.; Shan, H. B.; Lin, Y. M.; Zhang, K.; Zhou, B. J.; Zhong, Q.; Wang, P. C. A Fe single atom on N, S-doped carbon catalyst for performing N-alkylation of aromatic amines under solvent-free conditions. J. Mater. Chem. A 2021, 9, 25128–25135.

[65]

Zhang, X. P.; Lu, G. P.; Wang, K.; Lin, Y. M.; Wang, P. C.; Yi, W. B. Lignin-derived Zn single atom/N-codoped porous carbon for α-alkylation of aromatic ketones with alcohols via borrowing hydrogen strategy. Nano Res. 2022, 15, 1874–1881.

Nano Research
Pages 2308-2319
Cite this article:
Wang G, Sun L, Liu W, et al. Iron-nickel alloy particles with N-doped carbon “armor” as a highly selective and long-lasting catalyst for the synthesis of N-benzylaniline molecules. Nano Research, 2024, 17(4): 2308-2319. https://doi.org/10.1007/s12274-023-6041-z
Topics:

787

Views

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 25 May 2023
Revised: 10 July 2023
Accepted: 24 July 2023
Published: 08 September 2023
© Tsinghua University Press 2023
Return