AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Reprogramming the tumor immune microenvironment via nanomaterial-mediated dynamic therapy

Wangbo Jiao1Yao Feng1Chen Liang1Qiaoyi Lu1Haiming Fan1Xing-Jie Liang2 ( )Xiaoli Liu1,3( )
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

Nanomaterial-mediated dynamic therapy (NDT) is an emerging immuno-regulatable type for tumor therapy, whose effects are mediated by increased cellular levels of reactive oxygen species (ROS). We systematically examined the effects of NDT on four major cell types in the tumor microenvironment, namely tumor cells, lymphocytes, myeloid cells, and tumor stromal cells.

Abstract

Our improved knowledge of tumor immunology laid a solid foundation for the clinical use of tumor immunotherapies such as immune checkpoint blockers, and the efficacy of these drugs increased our confidence that immunomodulation was a viable way of treating cancer. The basis of immunotherapy is to break the immune escape of the tumor and resolve the immune suppressive microenvironment of tumors. Nanomaterial-mediated dynamic therapy (NDT) is an emerging immuno-regulatable type for tumor therapy, whose effects are mediated by increased cellular levels of reactive oxygen species (ROS). ROS is a potent trigger of immunogenic cell death, and this process initiates antitumor immunity. Nanomaterials for use in NDT can be engineered to interact with almost all cell types in the tumor microenvironment to remodel this environment. In this review, we systematically examined the effects of NDT on four major cell types in the tumor microenvironment, namely tumor cells, lymphocytes, myeloid cells, and tumor stromal cells. We believe that this review will improve researchers’ understanding of the anti-tumor immunity triggered by NDT, and provide ideas and inspiration for how optimally designed NDT schemes can be used to target the cells in the tumor microenvironment.

References

[1]

Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

[2]

Fan, W. P.; Huang, P.; Chen, X. Y. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488–6519.

[3]

Jia, C. Y.; Guo, Y. X.; Wu, F. G. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: Strategies and recent advances. Small 2022, 18, 2103868.

[4]

Zhang, L.; Li, C. X.; Wan, S. S.; Zhang, X. Z. Nanocatalyst-mediated chemodynamic tumor therapy. Adv. Healthcare Mater. 2022, 11, 2101971.

[5]

Zhang, Y.; Zhang, X. Q.; Yang, H. C.; Yu, L.; Xu, Y. J.; Sharma, A.; Yin, P.; Li, X. Y.; Kim, J. S.; Sun, Y. Advanced biotechnology-assisted precise sonodynamic therapy. Chem. Soc. Rev. 2021, 50, 11227–11248.

[6]
Liang, S.; Yao, J. J.; Liu, D.; Rao, L.; Chen, X. Y.; Wang, Z. H. Harnessing nanomaterials for cancer sonodynamic immunotherapy. Adv. Mater., in press, https://doi.org/10.1002/adma.202211130.
[7]

He, Y.; Chen, X. Y.; Zhang, Y.; Wang, Y. Y.; Cui, M. Y.; Li, G. L.; Liu, X. L.; Fan, H. M. Magnetoresponsive nanozyme: Magnetic stimulation on the nanozyme activity of iron oxide nanoparticles. Sci. China Life Sci. 2022, 65, 184–192.

[8]

Liu, X. L.; Yan, B.; Li, Y.; Ma, X. W.; Jiao, W. B.; Shi, K. J.; Zhang, T. B.; Chen, S. Z.; He, Y.; Liang, X. J. et al. Graphene oxide-grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species-related immune response for enhanced antitumor efficacy. ACS Nano 2020, 14, 1936–1950.

[9]

Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46.

[10]

Cheung, E. C.; Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297.

[11]

Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203.

[12]

Song, R. D.; Li, T. L.; Ye, J. Y.; Sun, F.; Hou, B.; Saeed, M.; Gao, J.; Wang, Y. J.; Zhu, Q. W.; Xu, Z. A. et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer. Adv. Mater. 2021, 33, 2101155.

[13]

He, L.; Xu, F. J.; Li, Y. X.; Jin, H. L.; Lo, P. C. Cupric-ion-promoted fabrication of oxygen-replenishing nanotherapeutics for synergistic chemo and photodynamic therapy against tumor hypoxia. Acta Biomater. 2023, 162, 57–71.

[14]

Wu, B. L.; Yuan, Y. C.; Liu, J. Y.; Shang, H. T.; Dong, J.; Liang, X. T.; Wang, D. X.; Chen, Y. C.; Wang, C. Y.; Zhou, Y. et al. Single-cell RNA sequencing reveals the mechanism of sonodynamic therapy combined with a RAS inhibitor in the setting of hepatocellular carcinoma. J. Nanobiotechnol. 2021, 19, 177.

[15]

Liu, B.; Qiao, G. L.; Han, Y.; Shen, E.; Alfranca, G.; Tan, H. S.; Wang, L. R.; Pan, S. J.; Ma, L. J.; Xiong, W. J. et al. Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater. 2020, 117, 361–373.

[16]

Meng, Z. Y.; Zhang, Y.; Shen, E.; Li, W.; Wang, Y. J.; Sathiyamoorthy, K.; Gao, W.; Kolios, M, C.; Bai, W. K.; Hu, B. et al. Marriage of virus-mimic surface topology and microbubble-assisted ultrasound for enhanced intratumor accumulation and improved cancer theranostics. Adv. Sci. 2021, 8, 2004670.

[17]

An, R. B.; Liu, L. J.; Wei, S. X.; Huang, Z.; Qiu, L.; Lin, J. G.; Liu, H.; Ye, D. J. Controlling disassembly of paramagnetic prodrug and photosensitizer nanoassemblies for on-demand orthotopic glioma theranostics. ACS Nano 2022, 16, 20607–20621.

[18]

Liu, X. L.; Zhang, Y. F.; Wang, Y. Y.; Zhu, W. J.; Li, G. L.; Ma, X. W.; Zhang, Y. H.; Chen, S. Z.; Tiwari, S.; Shi, K. J. et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 2020, 10, 3793–3815.

[19]

Yang, Y. R.; Huang, J.; Liu, M.; Qiu, Y. G.; Chen, Q. H.; Zhao, T. J.; Xiao, Z. X.; Yang, Y. Q.; Jiang, Y. T.; Huang, Q. et al. Emerging sonodynamic therapy-based nanomedicines for cancer immunotherapy. Adv. Sci. 2023, 10, 2204365.

[20]

Ji, B.; Wei, M. J.; Yang, B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics 2022, 12, 434–458.

[21]

Krysko, D. V.; Garg, A. D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 2012, 12, 860–875.

[22]

Huang, L. X.; Rong, Y.; Tang, X.; Yi, K. Z.; Qi, P.; Hou, J. X.; Liu, W. H.; He, Y.; Gao, X.; Yuan, C. H. et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol. Cancer 2022, 21, 45.

[23]

Garg, A. D.; Agostinis, P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol. Rev. 2017, 280, 126–148.

[24]

Aaes, T. L.; Vandenabeele, P. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses. Cell Death Differ. 2021, 28, 843–860.

[25]

Tang, J. Y.; Ou-Yang, F.; Hou, M. F.; Huang, H. W.; Wang, H. R.; Li, K. T.; Fayyaz, S.; Shu, C. W.; Chang, H. W. Oxidative stress-modulating drugs have preferential anticancer effects—Involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration. Semin. Cancer Biol. 2019, 58, 109–117.

[26]

Zhang, Z.; Zhang, L.; Zhou, L.; Lei, Y. L.; Zhang, Y. Y.; Huang, C. H. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol. 2019, 25, 101047.

[27]

Garg, A. D.; Galluzzi, L.; Apetoh, L.; Baert, T.; Birge, R. B.; Pedro, J. M. B. S.; Breckpot, K.; Brough, D.; Chaurio, R.; Cirone, M. et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front. Immunol. 2015, 6, 588.

[28]

Zorov, D. B.; Juhaszova, M.; Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950.

[29]

Nesci, S. The mitochondrial permeability transition pore in cell death: A promising drug binding bioarchitecture. Med. Res. Rev. 2020, 40, 811–817.

[30]

Zelenay, S.; Sousa, C. R. E. Adaptive immunity after cell death. Trends Immunol. 2013, 34, 329–335.

[31]

Duan, Q. Q.; Zhang, H. L.; Zheng, J. N.; Zhang, L. J. Turning cold into hot: Firing up the tumor microenvironment. Trends Cancer 2020, 6, 605–618.

[32]

Krause, K. H.; Michalak, M. Calreticulin. Cell 1997, 88, 439–443.

[33]

Raghavan, M.; Wijeyesakere, S. J.; Peters, L. R.; Del Cid, N. Calreticulin in the immune system: Ins and outs. Trends Immunol. 2013, 34, 13–21.

[34]

Liu, X. L.; Zheng, J. J.; Sun, W.; Zhao, X.; Li, Y.; Gong, N. Q.; Wang, Y. Y.; Ma, X. W.; Zhang, T. B.; Zhao, L. Y. et al. Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis. ACS Nano 2019, 13, 8811–8825.

[35]

Li, W.; Yang, J.; Luo, L. H.; Jiang, M. S.; Qin, B.; Yin, H.; Zhu, C. Q.; Yuan, X. L.; Zhang, J. L.; Luo, Z. Y. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.

[36]

Yang, W. J.; Zhang, F. W.; Deng, H. Z.; Lin, L. S.; Wang, S.; Kang, F.; Yu, G. C.; Lau, J.; Tian, R.; Zhang, M. R. et al. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano 2020, 14, 620–631.

[37]

Ni, K. Y.; Aung, T.; Li, S. Y.; Fatuzzo, N.; Liang, X. J.; Lin, W. B. RETRACTED: Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy. Chem 2019, 5, 1892–1913.

[38]

Rouhiainen, A.; Kuja-Panula, J.; Wilkman, E.; Pakkanen, J.; Stenfors, J.; Tuominen, R. K.; Lepäntalo, M.; Carpén, O.; Parkkinen, J.; Rauvala, H. Regulation of monocyte migration by amphoterin (HMGB1). Blood 2004, 104, 1174–1182.

[39]

Sims, G. P.; Rowe, D. C.; Rietdijk, S. T.; Herbst, R.; Coyle, A. J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 2010, 28, 367–388.

[40]

Kang, R.; Zhang, Q. H.; Zeh III, H. J.; Lotze, M. T.; Tang, D. L. HMGB1 in cancer: Good, bad, or both? Clin. Cancer Res. 2013, 19, 4046–4057.

[41]

Scaffidi, P.; Misteli, T.; Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418, 191–195.

[42]

Chen, R. C.; Kang, R.; Tang, D. L. The mechanism of HMGB1 secretion and release. Exp. Mol. Med. 2022, 54, 91–102.

[43]

Min, H. J.; Kim, J. H.; Yoo, J. E.; Oh, J. H.; Kim, K. S.; Yoon, J. H.; Kim, C. H. ROS-dependent HMGB1 secretion upregulates IL-8 in upper airway epithelial cells under hypoxic condition. Mucosal Immunol. 2017, 10, 685–694.

[44]

Cao, Y. G.; Liu, S. S.; Ma, Y.; Ma, L. L.; Zu, M. H.; Sun, J. F.; Dai, F. Y.; Duan, L.; Xiao, B. Oral nanomotor-enabled mucus traverse and tumor penetration for targeted chemo-sono-immunotherapy against colon cancer. Small 2022, 18, 2203466.

[45]

Zeng, Z. L.; Zhang, C.; He, S. S.; Li, J. C.; Pu, K. Y. Activatable cancer sono-immunotherapy using semiconducting polymer nanobodies. Adv. Mater. 2022, 34, 2203246.

[46]

Fucikova, J.; Kepp, O.; Kasikova, L.; Petroni, G.; Yamazaki, T.; Liu, P.; Zhao, L. W.; Spisek, R.; Kroemer, G.; Galluzzi, L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020, 11, 1013.

[47]

Trautmann, A. Extracellular ATP in the immune system: More than just a “danger signal”. Sci. Signaling 2009, 2, pe6.

[48]

Barrera, M. J.; Aguilera, S.; Castro, I.; Carvajal, P.; Jara, D.; Molina, C.; González, S.; González, M. J. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjögren’s syndrome. Autoimmun. Rev. 2021, 20, 102867.

[49]

Kepp, O.; Bezu, L.; Yamazaki, T.; Di Virgilio, F.; Smyth, M. J.; Kroemer, G.; Galluzzi, L. ATP and cancer immunosurveillance. EMBO J. 2021, 40, e108130.

[50]

Wu, L.; Xie, W.; Li, Y.; Ni, Q. K.; Timashev, P.; Lyu, M.; Xia, L. G.; Zhang, Y.; Liu, L. R.; Yuan, Y. F. et al. Biomimetic nanocarriers guide extracellular ATP homeostasis to remodel energy metabolism for activating innate and adaptive immunity system. Adv. Sci. 2022, 9, 2105376.

[51]

Idzko, M.; Ferrari, D.; Eltzschig, H. K. Nucleotide signalling during inflammation. Nature 2014, 509, 310–317.

[52]

Kepp, O.; Kroemer, G. A nanoparticle-based tour de force for enhancing immunogenic cell death elicited by photodynamic therapy. Oncoimmunology 2022, 11, 2098658.

[53]

Liu, Y.; Zhen, W. Y.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Na2S2O8 nanoparticles trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J. Am. Chem. Soc. 2020, 142, 21751–21757.

[54]

Tan, X.; Huang, J. Z.; Wang, Y. Q.; He, S. S.; Jia, L.; Zhu, Y. H.; Pu, K. Y.; Zhang, Y.; Yang, X. L. Transformable nanosensitizer with tumor microenvironment-activated sonodynamic process and calcium release for enhanced cancer immunotherapy. Angew. Chem., Int. Ed. 2021, 60, 14051–14059.

[55]

Wu, J. M.; Liu, T. E.; Rios, Z.; Mei, Q. B.; Lin, X. K.; Cao, S. S. Heat shock proteins and cancer. Trends Pharmacol. Sci. 2017, 38, 226–256.

[56]

Zininga, T.; Ramatsui, L.; Shonhai, A. Heat shock proteins as immunomodulants. Molecules 2018, 23, 2846.

[57]

Nayak, D. A.; Binder, R. J. Agents of cancer immunosurveillance: HSPs and dsDNA. Trends Immunol. 2022, 43, 404–413.

[58]

Yin, Y. F.; Jiang, X. W.; Sun, L. P.; Li, H. Y.; Su, C. X.; Zhang, Y.; Xu, G.; Li, X. L.; Zhao, C. K.; Chen, Y. et al. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today 2021, 36, 101009.

[59]

Jiang, H.; Fu, H.; Guo, Y. D.; Hu, P.; Shi, J. L. Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy. Biomaterials 2022, 289, 121799.

[60]

Greene, J. T.; Brian IV, B. F.; Senevirathne, S. E.; Freedman, T. S. Regulation of myeloid-cell activation. Curr. Opin. Immunol. 2021, 73, 34–42.

[61]

Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S. A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J. T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440.

[62]

DeNardo, D. G.; Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 2019, 19, 369–382.

[63]

Chen, Y. N.; Hu, M. R.; Wang, L.; Chen, W. D. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020, 877, 173090.

[64]

Mouton, A. J.; Li, X.; Hall, M. E.; Hall, J. E. Obesity, hypertension, and cardiac dysfunction: Novel roles of immunometabolism in macrophage activation and inflammation. Circ. Res. 2020, 126, 789–806.

[65]

Zhang, J.; Muri, J.; Fitzgerald, G.; Gorski, T.; Gianni-Barrera, R.; Masschelein, E.; D’Hulst, G.; Gilardoni, P.; Turiel, G.; Fan, Z. et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab. 2020, 31, 1136–1153.e7.

[66]

Wynn, T. A.; Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016, 44, 450–462.

[67]

Sheu, K. M.; Hoffmann, A. Functional hallmarks of healthy macrophage responses: Their regulatory basis and disease relevance. Annu. Rev. Immunol. 2022, 40, 295–321.

[68]

Anderson, N. R.; Minutolo, N. G.; Gill, S.; Klichinsky, M. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 2021, 81, 1201–1208.

[69]

Quail, D. F.; Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437.

[70]

Fricker, M.; Gibson, P. G. Macrophage dysfunction in the pathogenesis and treatment of asthma. Eur. Respir. J. 2017, 50, 1700196.

[71]

Tacke, F.; Zimmermann, H. W. Macrophage heterogeneity in liver injury and fibrosis. J. Hepatol. 2014, 60, 1090–1096.

[72]

Nicolás-Ávila, J. A.; Pena-Couso, L.; Muñoz-Cánoves, P.; Hidalgo, A. Macrophages, metabolism and heterophagy in the heart. Circ. Res. 2022, 130, 418–431.

[73]

Christofides, A.; Strauss, L.; Yeo, A.; Cao, C.; Charest, A.; Boussiotis, V. A. The complex role of tumor-infiltrating macrophages. Nat. Immunol. 2022, 23, 1148–1156.

[74]

Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416.

[75]

Mantovani, A.; Allavena, P.; Marchesi, F.; Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 2022, 21, 799–820.

[76]

Wang, H. R.; Han, X.; Dong, Z. L.; Xu, J.; Wang, J.; Liu, Z. Hyaluronidase with pH-responsive dextran modification as an adjuvant nanomedicine for enhanced photodynamic-immunotherapy of cancer. Adv. Funct. Mater. 2019, 29, 1902440.

[77]

Palmieri, E. M.; Gonzalez-Cotto, M.; Baseler, W. A.; Davies, L. C.; Ghesquière, B.; Maio, N.; Rice, C. M.; Rouault, T. A.; Cassel, T.; Higashi, R. M. et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat. Commun. 2020, 11, 698.

[78]

Ramesh, A.; Kumar, S.; Brouillard, A.; Nandi, D.; Kulkarni, A. A nitric oxide (NO) nanoreporter for noninvasive real-time imaging of macrophage immunotherapy. Adv. Mater. 2020, 32, 2000648.

[79]

Ma, Y. X.; Lu, Z. W.; Jia, B.; Shi, Y.; Dong, J.; Jiang, S. X.; Li, Z. DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging. ACS Nano 2022, 16, 12520–12531.

[80]

Ji, C. W.; Si, J. X.; Xu, Y.; Zhang, W. J.; Yang, Y. Q.; He, X.; Xu, H.; Mou, X. Z.; Ren, H.; Guo, H. Q. Mitochondria-targeted and ultrasound-responsive nanoparticles for oxygen and nitric oxide codelivery to reverse immunosuppression and enhance sonodynamic therapy for immune activation. Theranostics 2021, 11, 8587–8604.

[81]

Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 2015, 22, 377–388.

[82]

Yuan, Z.; Lin, C. C.; He, Y.; Tao, B. L.; Chen, M. W.; Zhang, J. X.; Liu, P.; Cai, K. Y. Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination. ACS Nano 2020, 14, 3546–3562.

[83]

Worbs, T.; Hammerschmidt, S. I.; Förster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 2017, 17, 30–48.

[84]

Lu, Z.; Chen, J. Y.; Yu, P. F.; Atherton, M. J.; Gui, J.; Tomar, V. S.; Middleton, J. D.; Sullivan, N. T.; Singhal, S.; George, S. S. et al. Tumor factors stimulate lysosomal degradation of tumor antigens and undermine their cross-presentation in lung cancer. Nat. Commun. 2022, 13, 6623.

[85]

Jhunjhunwala, S.; Hammer, C.; Delamarre, L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 2021, 21, 298–312.

[86]

Gardner, A.; Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 2016, 37, 855–865.

[87]

Cresswell, P. Antigen processing and presentation. Immunol. Rev. 2005, 207, 5–7.

[88]

Lee, M. Y.; Jeon, J. W.; Sievers, C.; Allen, C. T. Antigen processing and presentation in cancer immunotherapy. J. Immunother. Cancer 2020, 8, e001111.

[89]

Joffre, O. P.; Segura, E.; Savina, A.; Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 2012, 12, 557–569.

[90]

Tiberio, L.; Del Prete, A.; Schioppa, T.; Sozio, F.; Bosisio, D.; Sozzani, S. Chemokine and chemotactic signals in dendritic cell migration. Cell. Mol. Immunol. 2018, 15, 346–352.

[91]

Zhou, J. Y.; Wang, G. Y.; Chen, Y. Z.; Wang, H. X.; Hua, Y. Q.; Cai, Z. D. Immunogenic cell death in cancer therapy: Present and emerging inducers. J. Cell. Mol. Med. 2019, 23, 4854–4865.

[92]

Nace, G.; Evankovich, J.; Eid, R.; Tsung, A. Dendritic cells and damage-associated molecular patterns: Endogenous danger signals linking innate and adaptive immunity. J. Innate Immun. 2011, 4, 6–15.

[93]

Hayashi, K.; Nikolos, F.; Lee, Y. C.; Jain, A.; Tsouko, E.; Gao, H.; Kasabyan, A.; Leung, H. E.; Osipov, A.; Jung, S. Y. et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat. Commun. 2020, 11, 6299.

[94]

Luo, J. L.; Wang, X.; Shi, Z.; Zeng, Y. Q.; He, L. C.; Cao, J.; Sun, Y.; Zhang, T.; Huang, P. T. Enhancement of antitumor immunotherapy using mitochondria-targeted cancer cell membrane-biomimetic MOF-mediated sonodynamic therapy and checkpoint blockade immunotherapy. J. Nanobiotechnol. 2022, 20, 228.

[95]

Havel, J. J.; Chowell, D.; Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150.

[96]

Ding, B. B.; Zheng, P.; Jiang, F.; Zhao, Y. J.; Wang, M. F.; Chang, M. Y.; Ma, P. A.; Lin, J. MnOx nanospikes as nanoadjuvants and immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. Angew. Chem., Int. Ed. 2020, 59, 16381–16384.

[97]

Xu, C.; Nam, J.; Hong, H.; Xu, Y.; Moon, J. J. Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano 2019, 13, 12148–12161.

[98]

Gabrilovich, D. I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 2017, 5, 3–8.

[99]

Condamine, T.; Ramachandran, I.; Youn, J. I.; Gabrilovich, D. I. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu. Rev. Med. 2015, 66, 97–110.

[100]

Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016, 37, 208–220.

[101]

Xu, Q. B.; Zhan, G. T.; Zhang, Z. L.; Yong, T. Y.; Yang, X. L.; Gan, L. Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors. Theranostics 2021, 11, 1937–1952.

[102]

Mills, J. A.; Cooperband, S. R. Lymphocyte physiology. Annu. Rev. Med. 1971, 22, 185–220.

[103]

van der Leun, A. M.; Thommen, D. S.; Schumacher, T. N. CD8+ T cell states in human cancer:Insights from single-cell analysis. Nat. Rev. Cancer 2020, 20, 218–232.

[104]

Fu, C. M.; Jiang, A. M. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front. Immunol. 2018, 9, 3059.

[105]

Reina-Campos, M.; Scharping, N. E.; Goldrath, A. W. CD8+ T cell metabolism in infection and cancer. Nat. Rev. Immunol. 2021, 21, 718–738.

[106]

Fischer, K.; Hoffmann, P.; Voelkl, S.; Meidenbauer, N.; Ammer, J.; Edinger, M.; Gottfried, E.; Schwarz, S.; Rothe, G.; Hoves, S. et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007, 109, 3812–3819.

[107]

Watson, M. J.; Vignali, P. D. A.; Mullett, S. J.; Overacre-Delgoffe, A. E.; Peralta, R. M.; Grebinoski, S.; Menk, A. V.; Rittenhouse, N. L.; DePeaux, K.; Whetstone, R. D. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021, 591, 645–651.

[108]

He, R. Q.; Zang, J.; Zhao, Y. G.; Liu, Y.; Ruan, S. R.; Zheng, X.; Chong, G. W.; Xu, D. L.; Yang, Y. S.; Yang, Y. S. et al. Nanofactory for metabolic and chemodynamic therapy: Pro-tumor lactate trapping and anti-tumor ROS transition. J. Nanobiotechnol. 2021, 19, 426.

[109]

Philip, M.; Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 2022, 22, 209–223.

[110]

Hashimoto, M.; Kamphorst, A. O.; Im, S. J.; Kissick, H. T.; Pillai, R. N.; Ramalingam, S. S.; Araki, K.; Ahmed, R. CD8 T cell exhaustion in chronic infection and cancer:Opportunities for interventions. Annu. Rev. Med. 2018, 69, 301–318.

[111]

Morad, G.; Helmink, B. A.; Sharma, P.; Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021, 184, 5309–5337.

[112]

Chen, Y. T.; Zhang, Y.; Wang, B. L.; Fan, Q.; Yang, Q. Y.; Xu, J. L.; Dai, H. X.; Xu, F.; Wang, C. Blood clot scaffold loaded with liposome vaccine and siRNAs targeting PD-L1 and TIM-3 for effective DC activation and cancer immunotherapy. ACS Nano 2023, 17, 760–774.

[113]

Lei, H. L.; Kim, J. H.; Son, S.; Chen, L. F.; Pei, Z. F.; Yang, Y. Q.; Liu, Z.; Cheng, L.; Kim, J. S. Immunosonodynamic therapy designed with activatable sonosensitizer and immune stimulant imiquimod. ACS Nano 2022, 16, 10979–10993.

[114]

Togashi, Y.; Shitara, K.; Nishikawa, H. Regulatory T cells in cancer immunosuppression—Implications for anticancer therapy. Nat. Rev. Clin. Oncol. 2019, 16, 356–371.

[115]

Raffin, C.; Vo, L. T.; Bluestone, J. A. Treg cell-based therapies:Challenges and perspectives. Nat. Rev. Immunol. 2020, 20, 158–172.

[116]

Sakaguchi, S.; Miyara, M.; Costantino, C. M.; Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 2010, 10, 490–500.

[117]

Wei, J.; Zheng, W. T.; Chapman, N. M.; Geiger, T. L.; Chi, H. B. T cell metabolism in homeostasis and cancer immunity. Curr. Opin. Biotechnol. 2021, 68, 240–250.

[118]

Reginato, E.; Lindenmann, J.; Langner, C.; Schweintzger, N.; Bambach, I.; Smolle-Jüttner, F.; Wolf, P. Photodynamic therapy downregulates the function of regulatory T cells in patients with esophageal squamous cell carcinoma. Photochem. Photobiol. Sci. 2014, 13, 1281–1289.

[119]

Kurniawan, H.; Franchina, D. G.; Guerra, L.; Bonetti, L.; Soriano-Baguet, L.; Grusdat, M.; Schlicker, L.; Hunewald, O.; Dostert, C.; Merz, M. P. et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 2020, 31, 920–936.e7.

[120]

Bai, S.; Lu, Z. X.; Jiang, Y. H.; Shi, X. X.; Xu, D. Z.; Shi, Y. S.; Lin, G.; Liu, C.; Zhang, Y.; Liu, G. Nanotransferrin-based programmable catalysis mediates three-pronged induction of oxidative stress to enhance cancer immunotherapy. ACS Nano 2022, 16, 997–1012.

[121]

Tokunaga, R.; Naseem, M.; Lo, J. H.; Battaglin, F.; Soni, S.; Puccini, A.; Berger, M. D.; Zhang, W.; Baba, H.; Lenz, H. J. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat. Rev. 2019, 73, 10–19.

[122]

Wang, S. S.; Liu, W.; Ly, D.; Xu, H.; Qu, L. M.; Zhang, L. Tumor-infiltrating B cells: Their role and application in anti-tumor immunity in lung cancer. Cell. Mol. Immunol. 2019, 16, 6–18.

[123]

Germain, C.; Gnjatic, S.; Tamzalit, F.; Knockaert, S.; Remark, R.; Goc, J.; Lepelley, A.; Becht, E.; Katsahian, S.; Bizouard, G. et al. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am. J. Respir. Crit. Care Med. 2014, 189, 832–844.

[124]

Bruno, T. C.; Ebner, P. J.; Moore, B. L.; Squalls, O. G.; Waugh, K. A.; Eruslanov, E. B.; Singhal, S.; Mitchell, J. D.; Franklin, W. A.; Merrick, D. T. et al. Antigen-presenting intratumoral B cells affect CD4+ TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol. Res. 2017, 5, 898–907.

[125]

Shi, J. Y.; Gao, Q.; Wang, Z. C.; Zhou, J.; Wang, X. Y.; Min, Z. H.; Shi, Y. H.; Shi, G. M.; Ding, Z. B.; Ke, A. W. et al. Margin-infiltrating CD20+ B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin. Cancer Res. 2013, 19, 5994–6005.

[126]

Mauri, C.; Bosma, A. Immune regulatory function of B cells. Annu. Rev. Immunol. 2012, 30, 221–241.

[127]

Bodogai, M.; Moritoh, K.; Lee-Chang, C.; Hollander, C. M.; Sherman-Baust, C. A.; Wersto, R. P.; Araki, Y.; Miyoshi, I.; Yang, L.; Trinchieri, G. et al. Immunosuppressive and prometastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells. Cancer Res. 2015, 75, 3456–3465.

[128]

Affara, N. I.; Ruffell, B.; Medler, T. R.; Gunderson, A. J.; Johansson, M.; Bornstein, S.; Bergsland, E.; Steinhoff, M.; Li, Y. J.; Gong, Q. et al. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 2014, 25, 809–821.

[129]

Gunderson, A. J.; Kaneda, M. M.; Tsujikawa, T.; Nguyen, A. V.; Affara, N. I.; Ruffell, B.; Gorjestani, S.; Liudahl, S. M.; Truitt, M.; Olson, P. et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov. 2016, 6, 270–285.

[130]

Falk-Mahapatra, R.; Gollnick, S. O. Photodynamic therapy-induced cyclooxygenase 2 expression in tumor-draining lymph nodes regulates B-cell expression of interleukin 17 and neutrophil infiltration. Photochem. Photobiol. 2022, 98, 1207–1214.

[131]

Preise, D.; Oren, R.; Glinert, I.; Kalchenko, V.; Jung, S.; Scherz, A.; Salomon, Y. Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity. Cancer Immunol., Immunother. 2009, 58, 71–84.

[132]

Shimasaki, N.; Jain, A.; Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 2020, 19, 200–218.

[133]

Terrén, I.; Orrantia, A.; Vitallé, J.; Zenarruzabeitia, O.; Borrego, F. NK cell metabolism and tumor microenvironment. Front. Immunol. 2019, 10, 2278.

[134]

Wu, S. Y.; Fu, T.; Jiang, Y. Z.; Shao, Z. M. Natural killer cells in cancer biology and therapy. Mol. Cancer 2020, 19, 120.

[135]

Vosshenrich, C. A. J.; García-Ojeda, M. E.; Samson-Villéger, S. I.; Pasqualetto, V.; Enault, L.; Goff, O. R. L.; Corcuff, E.; Guy-Grand, D.; Rocha, B.; Cumano, A. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. immunol. 2006, 7, 1217–1224.

[136]

Di Santo, J. P.; Vosshenrich, C. A. J. Bone marrow versus thymic pathways of natural killer cell development. Immunol. Rev. 2006, 214, 35–46.

[137]

Xu, Y.; Guo, Y. Q.; Zhang, C. C.; Zhan, M. S.; Jia, L.; Song, S. L.; Jiang, C. J.; Shen, M. W.; Shi, X. Y. Fibronectin-coated metal-phenolic networks for cooperative tumor chemo-/chemodynamic/immune therapy via enhanced ferroptosis-mediated immunogenic cell death. ACS Nano 2022, 16, 984–996.

[138]

Liang, R. J.; Liu, L. L.; He, H. M.; Chen, Z. K.; Han, Z. Q.; Luo, Z. Y.; Wu, Z. H.; Zheng, M. B.; Ma, Y. F.; Cai, L. T. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. Biomaterials 2018, 177, 149–160.

[139]

Wang, S. J.; Liu, H. F.; Xin, J.; Rahmanzadeh, R.; Wang, J.; Yao, C. P.; Zhang, Z. X. Chlorin-based photoactivable galectin-3-inhibitor nanoliposome for enhanced photodynamic therapy and NK cell-related immunity in melanoma. ACS Appl. Mater. Interfaces 2019, 11, 41829–41841.

[140]

Bejarano, L.; Jordāo, M. J. C.; Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021, 11, 933–959.

[141]

Costa, A.; Kieffer, Y.; Scholer-Dahirel, A.; Pelon, F.; Bourachot, B.; Cardon, M.; Sirven, P.; Magagna, I.; Fuhrmann, L.; Bernard, C. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 2018, 33, 463–479.e10.

[142]

Song, M. J.; He, J. Y.; Pan, Q. Z.; Yang, J. Y.; Zhao, J. J.; Zhang, Y. J.; Huang, Y.; Tang, Y.; Wang, Q. J.; He, J. et al. Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology 2021, 73, 1717–1735.

[143]

De Sanctis, F.; Ugel, S.; Facciponte, J.; Facciabene, A. The dark side of tumor-associated endothelial cells. Semin. Immunol. 2018, 35, 35–47.

[144]

Hida, K.; Maishi, N.; Sakurai, Y.; Hida, Y.; Harashima, H. Heterogeneity of tumor endothelial cells and drug delivery. Adv. Drug Deliv. Rev. 2016, 99, 140–147.

[145]

Maishi, N.; Hida, K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 2017, 108, 1921–1926.

[146]

Ren, J.; Smid, M.; Iaria, J.; Salvatori, D. C. F.; van Dam, H.; Zhu, H. J.; Martens, J. W. M.; Ten Dijke, P. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 2019, 21, 109.

[147]

Kieffer, Y.; Hocine, H. R.; Gentric, G.; Pelon, F.; Bernard, C.; Bourachot, B.; Lameiras, S.; Albergante, L.; Bonneau, C.; Guyard, A. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020, 10, 1330–1351.

[148]

Pelon, F.; Bourachot, B.; Kieffer, Y.; Magagna, I.; Mermet-Meillon, F.; Bonnet, I.; Costa, A.; Givel, A. M.; Attieh, Y.; Barbazan, J. et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat. Commun. 2020, 11, 404.

[149]

Polet, F.; Feron, O. Endothelial cell metabolism and tumour angiogenesis: Glucose and glutamine as essential fuels and lactate as the driving force. J. Intern. Med. 2013, 273, 156–165.

[150]

Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136–151.

[151]

Wirsing, A. M.; Ervik, I. K.; Seppola, M.; Uhlin-Hansen, L.; Steigen, S. E.; Hadler-Olsen, E. Presence of high-endothelial venules correlates with a favorable immune microenvironment in oral squamous cell carcinoma. Mod. Pathol. 2018, 31, 910–922.

[152]

Dirkx, A. E. M.; Egbrink, M. G. A. O.; Kuijpers, M. J. E.; van der Niet, S. T.; Heijnen, V. V. T.; Steege, J. C. A. B. T.; Wagstaff, J.; Griffioen, A. W. Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res. 2003, 63, 2322–2329.

[153]

Motz, G. T.; Santoro, S. P.; Wang, L. P.; Garrabrant, T.; Lastra, R. R.; Hagemann, I. S.; Lal, P.; Feldman, M. D.; Benencia, F.; Coukos, G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 2014, 20, 607–615.

[154]

Tewalt, E. F.; Cohen, J. N.; Rouhani, S. J.; Guidi, C. J.; Qiao, H.; Fahl, S. P.; Conaway, M. R.; Bender, T. P.; Tung, K. S.; Vella, A. T. et al. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 2012, 120, 4772–4782.

[155]

Sakano, Y.; Noda, T.; Kobayashi, S.; Sasaki, K.; Iwagami, Y.; Yamada, D.; Tomimaru, Y.; Akita, H.; Gotoh, K.; Takahashi, H. et al. Tumor endothelial cell-induced CD8+ T-cell exhaustion via GPNMB in hepatocellular carcinoma. Cancer Sci. 2022, 113, 1625–1638.

[156]

Mashayekhi, V.; Xenaki, K. T.; van Bergen En Henegouwen, P. M. P.; Oliveira, S. Dual targeting of endothelial and cancer cells potentiates in vitro nanobody-targeted photodynamic therapy. Cancers 2020, 12, 2732.

[157]

Biffi, G.; Tuveson, D. A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 2021, 101, 147–176.

[158]

Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598.

[159]

Fullár, A.; Dudás, J.; Oláh, L.; Hollósi, P.; Papp, Z.; Sobel, G.; Karászi, K.; Paku, S.; Baghy, K.; Kovalszky, I. Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression. BMC Cancer 2015, 15, 256.

[160]

Truffi, M.; Sorrentino, L.; Corsi, F. Fibroblasts in the tumor microenvironment. Adv. Exp. Med. Biol. 2020, 1234, 15–29.

[161]

Lakins, M. A.; Ghorani, E.; Munir, H.; Martins, C. P.; Shields, J. D. Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T Cells to protect tumour cells. Nat. Commun. 2018, 9, 948.

[162]

Garin-Chesa, P.; Old, L. J.; Rettig, W. J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl. Acad. Sci. USA 1990, 87, 7235–7239.

[163]

Zhen, Z. P.; Tang, W.; Wang, M. Z.; Zhou, S. Y.; Wang, H.; Wu, Z. H.; Hao, Z. L.; Li, Z. B.; Liu, L.; Xie, J. Protein nanocage mediated fibroblast-activation protein targeted photoimmunotherapy to enhance cytotoxic T cell infiltration and tumor control. Nano Lett. 2017, 17, 862–869.

[164]

Zhou, S. Y.; Zhen, Z. P.; Paschall, A. V.; Xue, L. J.; Yang, X. Y.; Blackwell, A. G. B.; Cao, Z. W.; Zhang, W. Z.; Wang, M. Z.; Teng, Y. et al. FAP-targeted photodynamic therapy mediated by ferritin nanoparticles elicits an immune response against cancer cells and cancer associated fibroblasts. Adv. Funct. Mater. 2021, 31, 2007017.

[165]

Dvorak, H. F. Tumors: Wounds that do not heal-redux. Cancer Immunol. Res. 2015, 3, 1–11.

[166]

Dvorak, H. F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Engl. J. Med. 1986, 315, 1650–1659.

[167]

O’Donnell, J. S.; Teng, M. W. L.; Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 151–167.

[168]

Finck, A. V.; Blanchard, T.; Roselle, C. P.; Golinelli, G.; June, C. H. Engineered cellular immunotherapies in cancer and beyond. Nat. Med. 2022, 28, 678–689.

[169]

Dai, H. X.; Fan, Q.; Wang, C. Recent applications of immunomodulatory biomaterials for disease immunotherapy. Exploration 2022, 2, 20210157.

[170]

Khan, M. I.; Mohammad, A.; Patil, G.; Naqvi, S. A. H.; Chauhan, L. K. S.; Ahmad, I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 2012, 33, 1477–1488.

[171]

Huang, D. M.; Hsiao, J. K.; Chen, Y. C.; Chien, L. Y.; Yao, M.; Chen, Y. K.; Ko, B. S.; Hsu, S. C.; Tai, L. A.; Cheng, H. Y. et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 2009, 30, 3645–3651.

[172]

Jiao, W. B.; Zhang, T. B.; Peng, M. L.; Yi, J. B.; He, Y.; Fan, H. M. Design of magnetic nanoplatforms for cancer theranostics. Biosensors 2022, 12, 38.

Nano Research
Pages 13100-13112
Cite this article:
Jiao W, Feng Y, Liang C, et al. Reprogramming the tumor immune microenvironment via nanomaterial-mediated dynamic therapy. Nano Research, 2023, 16(12): 13100-13112. https://doi.org/10.1007/s12274-023-6042-y
Topics:
Part of a topical collection:

903

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 May 2023
Revised: 23 July 2023
Accepted: 26 July 2023
Published: 12 September 2023
© Tsinghua University Press 2023
Return