AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interfacial growth of N,S-codoped mesoporous carbon onto biomass-derived carbon for superior potassium-ion storage

Na Huang1Cheng Tang2Hao Jiang3Jie Sun1Aijun Du2Haijiao Zhang1( )
Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Show Author Information

Graphical Abstract

The N,S-codoped mesoporous carbon (NS-MC) has been well grown onto biomass-derived spore carbon by a facile interfacial assembly route and subsequent heat-treatment process. The unique structural and compositional advantages endow the designed unique heteroatom-doped carbon composite (denoted as NS-MC/SC) anode with an excellent potassium-ion storage capability, which shows a high reversible capacity of 350.5 mAh·g−1 after 300 cycles at 100 mA·g−1.

Abstract

Carbonaceous materials have been recognized as one of the most promising anode materials for potassium-ion batteries (PIBs) due to their abundant raw materials, controllable structure, superior conductivity, and good chemical inertness. However, the large radius of K ions and the low potassium content of intercalation compounds result in the sluggish storage kinetics and low reversible capacity of carbon anodes. In this work, we present a unique heteroatom-doped carbon composite (denoted as NS-MC/SC) through a facile interfacial assembly route and simple heat-treatment process, where NS-MC is well grafted onto the biomass-derived spore carbon (SC). This unique structural design endows it with abundant mesoporous channels, expanded layer spacing, and highly doped N and S. With these merits, the NS-MC/SC anode in PIBs exhibits a high reversible capacity of 350.4 mAh·g−1 at 100 mA·g−1 after 300 cycles, and an outstanding cycling stability. Besides, in-situ Raman spectra further verify the high reversibility of K ions insertion/extraction. Importantly, theoretical simulations also reveal that the N,S dual-doping is an efficient approach for improving the potassium-ion storage performance of NS-MC/SC.

Electronic Supplementary Material

Download File(s)
12274_2023_6045_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Ruan, J. F.; Zhao, Y. H.; Luo, S. N.; Hu, J. M.; Pang, Y. P.; Fang, F.; Zheng, S. Y. Killing two birds with one stone: Constructing tri-elements doped and hollow-structured carbon sphere by a single template for advanced potassium-ion hybrid capacitors. J. Energy Chem. 2022, 65, 556–564.

[2]

Wang, Y. J.; Jiao, Z.; Wu, M. H.; Zheng, K.; Zhang, H. W.; Zou, J.; Yu, C. Z.; Zhang, H. J. Flower-like C@SnOx@C hollow nanostructures with enhanced electrochemical properties for lithium storage. Nano Res. 2017, 10, 2966–2976.

[3]

Balsara, N. P.; Newman, J. Comparing the energy content of batteries, fuels, and materials. J. Chem. Educ. 2013, 90, 446–452.

[4]

Olivetti, E. A.; Ceder, G.; Gaustad, G. G.; Fu, X. K. Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals. Joule 2017, 1, 229–243.

[5]

Ruan, J. F.; Zhao, Y. H.; Luo, S. N.; Yuan, T.; Yang, J. H.; Sun, D. L.; Zheng, S. Y. Fast and stable potassium-ion storage achieved by in situ molecular self-assembling N/O dual-doped carbon network. Energy Storage Mater. 2019, 23, 46–54.

[6]

Zhang, L. P.; Wang, W.; Lu, S. F.; Xiang, Y. Carbon anode materials: A detailed comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 2021, 11, 2003640.

[7]

Xu, Y.; Ruan, J. F.; Pang, Y. P.; Sun, H.; Liang, C.; Li, H. W.; Yang, J. H.; Zheng, S. Y. Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors. Nano-Micro Lett. 2020, 13, 14.

[8]

Geng, H. Y.; Peng, Y.; Qu, L. T.; Zhang, H. J.; Wu, M. H. Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 2020, 10, 1903030.

[9]

Li, H. T.; Chen, L.; Li, X. M.; Sun, D. G.; Zhang, H. J. Recent progress on asymmetric carbon- and silica-based nanomaterials: From synthetic strategies to their applications. Nano-Micro Lett. 2022, 14, 45.

[10]

Yuan, F.; Shi, C. H.; Li, Q. L.; Wang, J.; Zhang, D.; Wang, Q. J.; Wang, H.; Li, Z. J.; Wang, W.; Wang, B. Unraveling the effect of intrinsic carbon defects on potassium storage performance. Adv. Funct. Mater. 2022, 32, 2208966.

[11]
Hu, Y.; Tang, C.; Lv, F. T.; Du, A. J.; Wu, Z. S.; Zhang, H. J. K-functionalized carbon quantum dots-induced interface assembly of carbon nanocages for ultrastable potassium storage performance. Small Methods 2022, 6, 2101627.
[12]

Sun, Y.; Shi, X. L.; Yang, Y. L.; Suo, G. Q.; Zhang, L.; Lu, S. Y.; Chen, Z. G. Biomass-derived carbon for high-performance batteries: From structure to properties. Adv. Funct. Mater. 2022, 32, 2201584.

[13]

Sun, Y.; Yang, Y. L.; Shi, X. L.; Ye, L. Y.; Hou, Y. W.; Wang, J. X.; Suo, G. Q.; Lu, S. Y.; Chen, Z. G. An ultra-stable sodium half/full battery based on a unique micro-channel pine-derived carbon/SnS2@reduced graphene oxide film. Battery Energy 2023, 2, 20220046.

[14]

Shen, S. H.; Zhou, R. F.; Li, Y. H.; Liu, B.; Pan, G. X.; Liu, Q.; Xiong, Q. Q.; Wang, X. L.; Xia, X. H.; Tu, J. P. Bacterium, fungus, and virus microorganisms for energy storage and conversion. Small Methods 2019, 3, 1900596.

[15]

Gao, L. F.; Zhang, G. Q.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. N. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Res. 2020, 13, 1604–1613.

[16]

Sun, Y.; Yang, Y. L.; Shi, X. L.; Suo, G. Q.; Xue, F.; Liu, J. J.; Lu, S. Y.; Chen, Z. G. N-doped silk wadding-derived carbon/SnOx@reduced graphene oxide film as an ultra-stable anode for sodium-ion half/full battery. Chem. Eng. J. 2022, 433, 133675.

[17]

Cao, J. M.; Sun, Z. Q.; Li, J. Z.; Zhu, Y. K.; Yuan, Z. Y.; Zhang, Y. M.; Li, D. D.; Wang, L. L.; Han, W. Microbe-assisted assembly of Ti3C2Tx MXene on fungi-derived nanoribbon heterostructures for ultrastable sodium and potassium ion storage. ACS Nano 2021, 15, 3423–3433.

[18]

Sun, D. G.; Tang, C.; Cheng, H.; Xu, W. L.; Du, A. J.; Zhang, H. J. Pumpkin-like MoP-MoS2@Aspergillus niger spore-derived N-doped carbon heterostructure for enhanced potassium storage. J. Energy Chem. 2022, 72, 479–486.

[19]

Wang, J.; Xin, H. L.; Wang, D. L. Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Part. Part. Syst. Charact. 2014, 31, 515–539.

[20]

Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Tian, J.; Lin, N.; Qian, Y. T. Understanding mesopore volume-enhanced extra-capacity: Optimizing mesoporous carbon for high-rate and long-life potassium-storage. Energy Storage Mater. 2020, 29, 341–349.

[21]

Li, H. T.; Fang, X.; Lv, F. T.; Yu, W.; Cheng, H.; Zhang, H. J. Controllable assembly of nitrogen-doped mesoporous carbon with different pore structures onto CNTs for excellent lithium storage. Nano Res. 2023, 16, 3879–3887.

[22]

Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855.

[23]

Hu, Y.; Tang, C.; Li, H. T.; Du, A. J.; Luo, W.; Wu, M. H.; Zhang, H. J. B-incorporated, N-doped hierarchically porous carbon nanosheets as anodes for boosted potassium storage capability. Chin. Chem. Lett. 2022, 33, 480–485.

[24]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[25]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[26]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[27]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[28]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[29]

Zhou, S. Y.; Liu, S. G.; Chen, W. X.; Cheng, Y.; Fan, J. J.; Zhao, L. Z.; Xiao, X.; Chen, Y. H.; Luo, C. X.; Wang, M. S. et al. A “biconcave-alleviated” strategy to construct Aspergillus niger-derived carbon/MoS2 for ultrastable sodium ion storage. ACS Nano 2021, 15, 13814–13825.

[30]

Qie, L.; Chen, W. M.; Xiong, X. Q.; Hu, C. C.; Zou, F.; Hu, P.; Huang, Y. H. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2015, 2, 1500195.

[31]

Li, W.; Zhou, M.; Li, H. M.; Wang, K. L.; Cheng, S. J.; Jiang, K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 2916–2921.

[32]

Feng, X.; Li, Y.; Zhang, M. H.; Li, Y.; Gong, Y. T.; Liu, M. Q.; Bai, Y.; Wu, C. Sulfur encapsulation and sulfur doping synergistically enhance sodium ion storage in microporous carbon anodes. ACS Appl. Mater. Interfaces 2022, 14, 50992–51000.

[33]

Gao, Y.; Wang, Q.; Ji, G. Z.; Li, A. M.; Niu, J. M. Doping strategy, properties and application of heteroatom-doped ordered mesoporous carbon. RSC Adv. 2021, 11, 5361–5383.

[34]

Feng, X.; Bai, Y.; Liu, M. Q.; Li, Y.; Yang, H. Y.; Wang, X. R.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 2021, 14, 2036–2089.

[35]

Cheng, G. Z.; Zhang, W. Z.; Wang, W.; Wang, H. L.; Wang, Y. X.; Shi, J.; Chen, J. W.; Liu, S.; Huang, M. H.; Mitlin, D. Sulfur and nitrogen codoped cyanoethyl cellulose-derived carbon with superior gravimetric and volumetric capacity for potassium ion storage. Carbon Energy 2022, 4, 986–1001.

[36]

Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

[37]

Qiu, D. P.; Zhang, B.; Zhang, T.; Shen, T.; Zhao, Z. J.; Hou, Y. L. Sulfur-doped carbon for potassium-ion battery anode: Insight into the doping and potassium storage mechanism of sulfur. ACS Nano 2022, 16, 21443–21451.

[38]

Tao, L.; Yang, Y. P.; Wang, H. L.; Zheng, Y. L.; Hao, H. C.; Song, W. P.; Shi, J.; Huang, M. H.; Mitlin, D. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy Storage Mater. 2020, 27, 212–225.

[39]

Zuo, Y. Q.; Li, P.; Zang, R.; Wang, S. J.; Man, Z. M.; Li, P. X.; Wang, S. Y.; Zhou, W. Sulfur-doped flowerlike porous carbon derived from metal-organic frameworks as a high-performance potassium-ion battery anode. ACS Appl. Energy Mater. 2021, 4, 2282–2291.

[40]

Chen, M.; Cao, Y. P.; Ma, C.; Yang, H. A N/S/O-tridoped hard carbon network anode from mercaptan/polyurethane-acrylate resin for potassium-ion batteries. Nano Energy 2021, 81, 105640.

[41]

Li, Y. P.; Zhong, W. T.; Yang, C. H.; Zheng, F. H.; Pan, Q. C.; Liu, Y. Z.; Wang, G.; Xiong, X. H.; Liu, M. L. N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem. Eng. J. 2019, 358, 1147–1154.

[42]

Chen, M.; Wang, W.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S. J.; Yang, H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1800171.

[43]

Ma, H. L.; Qi, X. J.; Peng, D. Q.; Chen, Y. X.; Wei, D. H.; Ju, Z. C.; Zhuang, Q. C. Novel fabrication of N/S co-doped hierarchically porous carbon for potassium-ion batteries. ChemistrySelect 2019, 4, 11488–11495.

[44]

Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

[45]

Sun, Y. H.; Zhu, D. M.; Liang, Z. F.; Zhao, Y. X.; Tian, W. F.; Ren, X. C.; Wang, J.; Li, X. Y.; Gao, Y.; Wen, W. et al. Facile renewable synthesis of nitrogen/oxygen co-doped graphene-like carbon nanocages as general lithium-ion and potassium-ion batteries anode. Carbon 2020, 167, 685–695.

[46]

Li, J. P.; Li, Y. J.; Ma, X. D.; Zhang, K.; Hu, J. H.; Yang, C. H.; Liu, M. L. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chem. Eng. J. 2020, 384, 123328.

[47]

Choi, J.; Jin, A. H.; Jung, H. D.; Ko, D.; Um, J. H.; Choi, Y. J.; Kim, S. H.; Back, S.; Yu, S. H.; Piao, Y. Z. Nitrogen and sulfur co-doped graphene nanoribbons with well-ordered stepped edges for high-performance potassium-ion battery anodes. Energy Storage Mater. 2022, 48, 325–334.

[48]

Li, D. P.; Ren, X. H.; Ai, Q.; Sun, Q.; Zhu, L.; Liu, Y.; Liang, Z.; Peng, R. Q.; Si, P. C.; Lou, J. et al. Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1802386.

[49]

Chi, C. L.; Liu, Z.; Lu, X. L.; Meng, Y.; Huangfu, C.; Yan, Y. C.; Qiu, Z. P.; Qi, B.; Wang, G. W.; Pang, H. et al. Balance of sulfur doping content and conductivity of hard carbon anode for high-performance K-ion storage. Energy Storage Mater. 2023, 54, 668–679.

[50]

Sun, J. H.; Sadd, M.; Edenborg, P.; Grönbeck, H.; Thiesen, P. H.; Xia, Z. Y.; Quintano, V.; Qiu, R.; Matic, A.; Palermo, V. Real-time imaging of Na+ reversible intercalation in “Janus” graphene stacks for battery applications. Sci. Adv. 2021, 7, eabf0812.

Nano Research
Pages 2619-2627
Cite this article:
Huang N, Tang C, Jiang H, et al. Interfacial growth of N,S-codoped mesoporous carbon onto biomass-derived carbon for superior potassium-ion storage. Nano Research, 2024, 17(4): 2619-2627. https://doi.org/10.1007/s12274-023-6045-8
Topics:

930

Views

5

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 09 July 2023
Revised: 25 July 2023
Accepted: 26 July 2023
Published: 25 August 2023
© Tsinghua University Press 2023
Return