Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The discovery of two-dimensional (2D) semiconductor has opened up new avenues for the development of short-channel field-effect transistors (FETs) with desired electrical performance. Among them, orthorhombic tin-selenide (SnSe) has garnered increasing attention due to its potential applications in a variety of electronic, optoelectronic, and thermoelectric devices. However, the realization of high-performance SnSe FETs with low contact resistance (Rc) remains a challenge. Herein, we systematically investigate the contact of few-layer SnSe FETs through the modulation of native oxide on SnSe by using different metals. It is found that chromium (Cr)-contacted devices possess the best FET performance, such as electron mobility up to 606 cm2/(V·s) at 78 K, current on/off ratio exceeding 1010, and saturation current of ~ 550 μA/μm, where a negligible Schottky barrier (SB) of ~ 30 meV and a low contact resistance of ~ 425 Ω μm are achieved. X-ray photoelectron spectroscopy (XPS) and cross-sectional electron dispersive X-ray spectroscopy (EDX) results further reveal that the improved contact arises from the Cr-induced reduction of native oxide (SnOx) to Sn, which thins the tunneling barrier for efficient electron injection. Our findings provide a deep insight into the 2D-metal contact of SnSe and pave the way for its applications in future nanoelectronics.
Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat Rev Mater. 2017, 2, 17033.
Hu, Z. H.; Niu, T. C.; Guo, R.; Zhang, J. L.; Lai, M.; He, J.; Wang, L.; Chen, W. Two-dimensional black phosphorus: Its fabrication, functionalization and applications. Nanoscale 2018, 10, 21575–21603.
Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.
Das, S.; Sebastian, A.; Pop, E.; McClellan, C. J.; Franklin, A. D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A. V.; Appenzeller, J. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799.
Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Xiong, J.; Zhai, T. Y. Booming development of group IV–VI semiconductors: Fresh blood of 2D family. Adv. Sci. 2016, 3, 1600177.
Shi, W. R.; Gao, M. X.; Wei, J. P.; Gao, J. F.; Fan, C. W.; Ashalley, E.; Li, H. D.; Wang, Z. M. Tin selenide (SnSe): Growth, properties, and applications. Adv. Sci. 2018, 5, 1700602.
Lefebvre, I.; Szymanski, M. A.; Olivier-Fourcade, J.; Jumas, J. C. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 1998, 58, 1896–1906.
Baumgardner, W. J.; Choi, J. J.; Lim, Y. F.; Hanrath, T. SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry. J. Am. Chem. Soc. 2010, 132, 9519–9521.
Liu, S.; Chen, Y. J.; Yang, S. X.; Jiang, C. B. SnSe field-effect transistors with improved electrical properties. Nano Res. 2022, 15, 1532–1537.
Cho, S. H.; Cho, K.; Park, N. W.; Park, S.; Koh, J. H.; Lee, S. K. Multi-layer SnSe nanoflake field-effect transistors with low-resistance Au ohmic contacts. Nanoscale Res. Lett. 2017, 12, 373.
Wang, H.; Lu, W. H.; Hou, S. H.; Yu, B. X.; Zhou, Z. Y.; Xue, Y. L.; Guo, R.; Wang, S. F.; Zeng, K. Y.; Yan, X. B. A 2D-SnSe film with ferroelectricity and its bio-realistic synapse application. Nanoscale 2020, 12, 21913–21922.
Chun, D.; Walser, R. M.; Bené, R. W.; Courtney, T. H. Polarity-dependent memory switching in devices with SnSe and SnSe2 crystals. Appl. Phys. Lett. 1974, 24, 479–481.
Vaughn II, D. D.; In, S. I.; Schaak, R. E. A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: The case of SnSe. ACS Nano 2011, 5, 8852–8860.
Pejova, B.; Tanuševsk, A. A Study of photophysics, photoelectrical properties, and photoconductivity relaxation dynamics in the case of nanocrystalline Tin(II) selenide thin films. J. Phys. Chem. C 2008, 112, 3525–3537.
Yang, S. X.; Liu, Y.; Wu, M. H.; Zhao, L. D.; Lin, Z. Y.; Cheng, H. C.; Wang, Y. L.; Jiang, C. B.; Wei, S. H.; Huang, L. et al. Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 2018, 11, 554–564.
Pei, T. F.; Bao, L. H.; Ma, R. S.; Song, S. R.; Ge, B. H.; Wu, L. M.; Zhou, Z.; Wang, G. C.; Yang, H. F.; Li, J. J. et al. Epitaxy of ultrathin SnSe single crystals on polydimethylsiloxane: In-plane electrical anisotropy and gate-tunable thermopower. Adv. Electron. Mater. 2016, 2, 1600292.
Zhang, C. X.; Ouyang, H.; Miao, R. L.; Sui, Y. Z.; Hao, H.; Tang, Y. X.; You, J.; Zheng, X.; Xu, Z. J.; Cheng, X. A. et al. Anisotropic nonlinear optical properties of a SnSe flake and a novel perspective for the application of all-optical switching. Adv. Opt. Mater. 2019, 7, 1900631.
Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2015, 351, 141–144.
Zhang, Q.; Chere, E. K.; Sun, J. Y.; Cao, F.; Dahal, K.; Chen, S.; Chen, G.; Ren, Z. F. Studies on thermoelectric properties of n-type polycrystalline SnSe1−xSx by iodine doping. Adv. Energy Mater. 2015, 5, 1500360.
Zhao, S. L.; Wang, H.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.
Zhang, B.; Peng, K. L.; Sha, X. C.; Li, A.; Zhou, X. Y.; Chen, Y. H.; Deng, Q. S.; Yang, D. F.; Ma, E.; Han, X. D. A second amorphous layer underneath surface oxide. Microsc. Microanal. 2017, 23, 173–178.
Zheng, Y.; Gao, J.; Han, C.; Chen, W. Ohmic contact engineering for two-dimensional materials. Cell Rep. Phys. Sci. 2021, 2, 100298.
Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037–3058.
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.
Im, H. S.; Myung, Y.; Cho, Y. J.; Kim, C. H.; Kim, H. S.; Back, S. H.; Jung, C. S.; Jang, D. M.; Lim, Y. R.; Park, J. et al. Facile phase and composition tuned synthesis of tin chalcogenide nanocrystals. RSC Adv. 2013, 3, 10349–10354.
Evans, M. W.; Eckardt, H.; Evans, G. J. ECE applied to energy from space-time: Amplification of the radiative correction by spin connection resonance. J. Found. Phys. Chem. 2011, 1, 535–560.
Jung, Y.; Choi, M. S.; Nipane, A.; Borah, A.; Kim, B.; Zangiabadi, A.; Taniguchi, T.; Watanabe, K.; Yoo, W. J.; Hone, J. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2019, 2, 187–194.
Chuang, H. J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 2016, 16, 1896–1902.
Zheng, Y.; Xiang, D.; Zhang, J. L.; Guo, R.; Wang, W. H.; Liu, T.; Loh, L.; Wang, Y. N.; Gao, J.; Han, C. et al. Controlling phase transition in WSe2 towards ideal n-type transistor. Nano Res. 2021, 14, 2703–2710.
Kwon, G.; Choi, Y. H.; Lee, H.; Kim, H. S.; Jeong, J.; Jeong, K.; Baik, M.; Kwon, H.; Ahn, J.; Lee, E. et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 2022, 5, 241–247.
Shen, P. C.; Su, C.; Lin, Y. X.; Chou, A. S.; Cheng, C. C.; Park, J. H.; Chiu, M. H.; Lu, A. Y.; Tang, H. L.; Tavakoli, M. M. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 211–217.
Li, W. S.; Gong, X. S.; Yu, Z. H.; Ma, L.; Sun, W. J.; Gao, S.; Köroğlu, Ç.; Wang, W. F.; Liu, L.; Li, T. T. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 2023, 613, 274–279.
Xie, L.; Liao, M. Z.; Wang, S. P.; Yu, H.; Du, L. J.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X. B. et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 2017, 29, 1702522.
Shi, X. H.; Li, X. F.; Guo, Q.; Gao, H.; Zeng, M.; Han, Y. B.; Yan, S. W.; Wu, Y. Q. Improved self-heating in short-channel monolayer WS2 transistors with high-thermal conductivity BeO dielectrics. Nano Lett. 2022, 22, 7667–7673.
Mleczko, M. J.; Yu, A. C.; Smyth, C. M.; Chen, V.; Shin, Y. C.; Chatterjee, S.; Tsai, Y. C.; Nishi, Y.; Wallace, R. M.; Pop, E. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 2019, 19, 6352–6362.
Somvanshi, D.; Ber, E.; Bailey, C. S.; Pop, E.; Yalon, E. Improved current density and contact resistance in bilayer MoSe2 field effect transistors by AlOx capping. ACS Appl. Mater. Interfaces 2020, 12, 36355–36361.
Maskaeva, L. N.; Fedorova, E. A.; Markov, V. F.; Kuznetsov, M. V.; Lipina, O. G. A. Composition, structure, and semiconductor properties of chemically deposited SnSe films. Semiconductors 2019, 53, 853–859.
Lin, A. W. C.; Armstrong, N. R.; Kuwana, T. X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides. Anal. Chem. 1977, 49, 1228–1235.
Li, S.; Wang, Y. M.; Chen, C.; Li, X. F.; Xue, W. H.; Wang, X. Y.; Zhang, Z. W.; Cao, F.; Sui, J. H.; Liu, X. J. et al. Heavy doping by bromine to improve the thermoelectric properties of n-type polycrystalline SnSe. Adv. Sci. 2018, 5, 1800598.
Jang, J.; Kim, Y.; Chee, S. S.; Kim, H.; Whang, D.; Kim, G. H.; Yun, S. J. Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors. ACS Appl. Mater. Interfaces 2020, 12, 5031–5039.
Palumbo, F.; Wen, C.; Lombardo, S.; Pazos, S.; Aguirre, F.; Eizenberg, M.; Hui, F.; Lanza, M. A review on dielectric breakdown in thin dielectrics: Silicon dioxide, high-k, and layered dielectrics. Adv. Funct. Mater. 2020, 30, 1900657.
Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.
Minder, R.; Ottaviani, G.; Canali, C. Charge transport in layer semiconductors. J. Phys. Chem. Solids 1976, 37, 417–424.
Wu, R. X.; Tao, Q. Y.; Li, J.; Li, W.; Chen, Y.; Lu, Z. Y.; Shu, Z. W.; Zhao, B.; Ma, H. F.; Zhang, Z. W. et al. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 2022, 5, 497–504.