AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optimizing 2D-metal contact in layered Tin-selenide via native oxide modulation

Yue Zheng1Qi You1Zhentian Yin1Jian Tang1Ke Jiang1Zihao Xie1Henan Li2Cheng Han1( )Yumeng Shi2
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
Show Author Information

Graphical Abstract

The presence of native oxide on two-dimensional (2D)-layered SnSe induces a sizable tunneling barrier that limits the carrier transport between metal and SnSe. Through the modulation of native oxide using different metals, we have successfully achieved high-performance SnSe field-effect-transistors (FETs) with the optimized contact of chromium.

Abstract

The discovery of two-dimensional (2D) semiconductor has opened up new avenues for the development of short-channel field-effect transistors (FETs) with desired electrical performance. Among them, orthorhombic tin-selenide (SnSe) has garnered increasing attention due to its potential applications in a variety of electronic, optoelectronic, and thermoelectric devices. However, the realization of high-performance SnSe FETs with low contact resistance (Rc) remains a challenge. Herein, we systematically investigate the contact of few-layer SnSe FETs through the modulation of native oxide on SnSe by using different metals. It is found that chromium (Cr)-contacted devices possess the best FET performance, such as electron mobility up to 606 cm2/(V·s) at 78 K, current on/off ratio exceeding 1010, and saturation current of ~ 550 μA/μm, where a negligible Schottky barrier (SB) of ~ 30 meV and a low contact resistance of ~ 425 Ω μm are achieved. X-ray photoelectron spectroscopy (XPS) and cross-sectional electron dispersive X-ray spectroscopy (EDX) results further reveal that the improved contact arises from the Cr-induced reduction of native oxide (SnOx) to Sn, which thins the tunneling barrier for efficient electron injection. Our findings provide a deep insight into the 2D-metal contact of SnSe and pave the way for its applications in future nanoelectronics.

Electronic Supplementary Material

Download File(s)
12274_2023_6047_MOESM1_ESM.pdf (2.6 MB)

References

[1]
Lojek, B. History of Semiconductor Engineering; Springer: Berlin, 2007.
[2]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[3]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[4]

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

[5]

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat Rev Mater. 2017, 2, 17033.

[6]

Hu, Z. H.; Niu, T. C.; Guo, R.; Zhang, J. L.; Lai, M.; He, J.; Wang, L.; Chen, W. Two-dimensional black phosphorus: Its fabrication, functionalization and applications. Nanoscale 2018, 10, 21575–21603.

[7]

Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

[8]

Das, S.; Sebastian, A.; Pop, E.; McClellan, C. J.; Franklin, A. D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A. V.; Appenzeller, J. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799.

[9]

Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Xiong, J.; Zhai, T. Y. Booming development of group IV–VI semiconductors: Fresh blood of 2D family. Adv. Sci. 2016, 3, 1600177.

[10]

Shi, W. R.; Gao, M. X.; Wei, J. P.; Gao, J. F.; Fan, C. W.; Ashalley, E.; Li, H. D.; Wang, Z. M. Tin selenide (SnSe): Growth, properties, and applications. Adv. Sci. 2018, 5, 1700602.

[11]

Lefebvre, I.; Szymanski, M. A.; Olivier-Fourcade, J.; Jumas, J. C. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 1998, 58, 1896–1906.

[12]

Baumgardner, W. J.; Choi, J. J.; Lim, Y. F.; Hanrath, T. SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry. J. Am. Chem. Soc. 2010, 132, 9519–9521.

[13]

Liu, S.; Chen, Y. J.; Yang, S. X.; Jiang, C. B. SnSe field-effect transistors with improved electrical properties. Nano Res. 2022, 15, 1532–1537.

[14]

Cho, S. H.; Cho, K.; Park, N. W.; Park, S.; Koh, J. H.; Lee, S. K. Multi-layer SnSe nanoflake field-effect transistors with low-resistance Au ohmic contacts. Nanoscale Res. Lett. 2017, 12, 373.

[15]

Wang, H.; Lu, W. H.; Hou, S. H.; Yu, B. X.; Zhou, Z. Y.; Xue, Y. L.; Guo, R.; Wang, S. F.; Zeng, K. Y.; Yan, X. B. A 2D-SnSe film with ferroelectricity and its bio-realistic synapse application. Nanoscale 2020, 12, 21913–21922.

[16]

Chun, D.; Walser, R. M.; Bené, R. W.; Courtney, T. H. Polarity-dependent memory switching in devices with SnSe and SnSe2 crystals. Appl. Phys. Lett. 1974, 24, 479–481.

[17]

Vaughn II, D. D.; In, S. I.; Schaak, R. E. A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: The case of SnSe. ACS Nano 2011, 5, 8852–8860.

[18]

Pejova, B.; Tanuševsk, A. A Study of photophysics, photoelectrical properties, and photoconductivity relaxation dynamics in the case of nanocrystalline Tin(II) selenide thin films. J. Phys. Chem. C 2008, 112, 3525–3537.

[19]

Yang, S. X.; Liu, Y.; Wu, M. H.; Zhao, L. D.; Lin, Z. Y.; Cheng, H. C.; Wang, Y. L.; Jiang, C. B.; Wei, S. H.; Huang, L. et al. Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 2018, 11, 554–564.

[20]

Pei, T. F.; Bao, L. H.; Ma, R. S.; Song, S. R.; Ge, B. H.; Wu, L. M.; Zhou, Z.; Wang, G. C.; Yang, H. F.; Li, J. J. et al. Epitaxy of ultrathin SnSe single crystals on polydimethylsiloxane: In-plane electrical anisotropy and gate-tunable thermopower. Adv. Electron. Mater. 2016, 2, 1600292.

[21]

Zhang, C. X.; Ouyang, H.; Miao, R. L.; Sui, Y. Z.; Hao, H.; Tang, Y. X.; You, J.; Zheng, X.; Xu, Z. J.; Cheng, X. A. et al. Anisotropic nonlinear optical properties of a SnSe flake and a novel perspective for the application of all-optical switching. Adv. Opt. Mater. 2019, 7, 1900631.

[22]

Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2015, 351, 141–144.

[23]
Chang, C.; Wu, M. H.; He, D. S.; Pei, Y. L.; Wu, C. F.; Wu, X. F.; Yu, H. L.; Zhu, F. Y.; Wang, K. D.; Chen, Y. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018, 360, 778–783.
[24]

Zhang, Q.; Chere, E. K.; Sun, J. Y.; Cao, F.; Dahal, K.; Chen, S.; Chen, G.; Ren, Z. F. Studies on thermoelectric properties of n-type polycrystalline SnSe1−xSx by iodine doping. Adv. Energy Mater. 2015, 5, 1500360.

[25]

Zhao, S. L.; Wang, H.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.

[26]

Zhang, B.; Peng, K. L.; Sha, X. C.; Li, A.; Zhou, X. Y.; Chen, Y. H.; Deng, Q. S.; Yang, D. F.; Ma, E.; Han, X. D. A second amorphous layer underneath surface oxide. Microsc. Microanal. 2017, 23, 173–178.

[27]
Zhang, B.; Li, A.; Han, G.; Zhang, Z. H.; Peng, K. L.; Gong, X. N.; Zhou, X. Y.; Han, X. D. Dynamic epitaxial crystallization of SnSe2 on the oxidized SnSe surface and its atomistic mechanisms. ACS Appl. Mater. Interfaces, in press, https://doi.org/10.1021/acsami.0c05029.
[28]

Zheng, Y.; Gao, J.; Han, C.; Chen, W. Ohmic contact engineering for two-dimensional materials. Cell Rep. Phys. Sci. 2021, 2, 100298.

[29]

Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037–3058.

[30]

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

[31]

Im, H. S.; Myung, Y.; Cho, Y. J.; Kim, C. H.; Kim, H. S.; Back, S. H.; Jung, C. S.; Jang, D. M.; Lim, Y. R.; Park, J. et al. Facile phase and composition tuned synthesis of tin chalcogenide nanocrystals. RSC Adv. 2013, 3, 10349–10354.

[32]

Evans, M. W.; Eckardt, H.; Evans, G. J. ECE applied to energy from space-time: Amplification of the radiative correction by spin connection resonance. J. Found. Phys. Chem. 2011, 1, 535–560.

[33]

Jung, Y.; Choi, M. S.; Nipane, A.; Borah, A.; Kim, B.; Zangiabadi, A.; Taniguchi, T.; Watanabe, K.; Yoo, W. J.; Hone, J. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2019, 2, 187–194.

[34]

Chuang, H. J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 2016, 16, 1896–1902.

[35]

Zheng, Y.; Xiang, D.; Zhang, J. L.; Guo, R.; Wang, W. H.; Liu, T.; Loh, L.; Wang, Y. N.; Gao, J.; Han, C. et al. Controlling phase transition in WSe2 towards ideal n-type transistor. Nano Res. 2021, 14, 2703–2710.

[36]

Kwon, G.; Choi, Y. H.; Lee, H.; Kim, H. S.; Jeong, J.; Jeong, K.; Baik, M.; Kwon, H.; Ahn, J.; Lee, E. et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 2022, 5, 241–247.

[37]

Shen, P. C.; Su, C.; Lin, Y. X.; Chou, A. S.; Cheng, C. C.; Park, J. H.; Chiu, M. H.; Lu, A. Y.; Tang, H. L.; Tavakoli, M. M. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 211–217.

[38]

Li, W. S.; Gong, X. S.; Yu, Z. H.; Ma, L.; Sun, W. J.; Gao, S.; Köroğlu, Ç.; Wang, W. F.; Liu, L.; Li, T. T. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 2023, 613, 274–279.

[39]

Xie, L.; Liao, M. Z.; Wang, S. P.; Yu, H.; Du, L. J.; Tang, J.; Zhao, J.; Zhang, J.; Chen, P.; Lu, X. B. et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater. 2017, 29, 1702522.

[40]

Shi, X. H.; Li, X. F.; Guo, Q.; Gao, H.; Zeng, M.; Han, Y. B.; Yan, S. W.; Wu, Y. Q. Improved self-heating in short-channel monolayer WS2 transistors with high-thermal conductivity BeO dielectrics. Nano Lett. 2022, 22, 7667–7673.

[41]

Mleczko, M. J.; Yu, A. C.; Smyth, C. M.; Chen, V.; Shin, Y. C.; Chatterjee, S.; Tsai, Y. C.; Nishi, Y.; Wallace, R. M.; Pop, E. Contact engineering high-performance n-type MoTe2 transistors. Nano Lett. 2019, 19, 6352–6362.

[42]

Somvanshi, D.; Ber, E.; Bailey, C. S.; Pop, E.; Yalon, E. Improved current density and contact resistance in bilayer MoSe2 field effect transistors by AlOx capping. ACS Appl. Mater. Interfaces 2020, 12, 36355–36361.

[43]

Maskaeva, L. N.; Fedorova, E. A.; Markov, V. F.; Kuznetsov, M. V.; Lipina, O. G. A. Composition, structure, and semiconductor properties of chemically deposited SnSe films. Semiconductors 2019, 53, 853–859.

[44]

Lin, A. W. C.; Armstrong, N. R.; Kuwana, T. X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides. Anal. Chem. 1977, 49, 1228–1235.

[45]

Li, S.; Wang, Y. M.; Chen, C.; Li, X. F.; Xue, W. H.; Wang, X. Y.; Zhang, Z. W.; Cao, F.; Sui, J. H.; Liu, X. J. et al. Heavy doping by bromine to improve the thermoelectric properties of n-type polycrystalline SnSe. Adv. Sci. 2018, 5, 1800598.

[46]

Jang, J.; Kim, Y.; Chee, S. S.; Kim, H.; Whang, D.; Kim, G. H.; Yun, S. J. Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors. ACS Appl. Mater. Interfaces 2020, 12, 5031–5039.

[47]

Palumbo, F.; Wen, C.; Lombardo, S.; Pazos, S.; Aguirre, F.; Eizenberg, M.; Hui, F.; Lanza, M. A review on dielectric breakdown in thin dielectrics: Silicon dioxide, high-k, and layered dielectrics. Adv. Funct. Mater. 2020, 30, 1900657.

[48]

Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

[49]

Minder, R.; Ottaviani, G.; Canali, C. Charge transport in layer semiconductors. J. Phys. Chem. Solids 1976, 37, 417–424.

[50]

Wu, R. X.; Tao, Q. Y.; Li, J.; Li, W.; Chen, Y.; Lu, Z. Y.; Shu, Z. W.; Zhao, B.; Ma, H. F.; Zhang, Z. W. et al. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 2022, 5, 497–504.

Nano Research
Pages 3014-3020
Cite this article:
Zheng Y, You Q, Yin Z, et al. Optimizing 2D-metal contact in layered Tin-selenide via native oxide modulation. Nano Research, 2024, 17(4): 3014-3020. https://doi.org/10.1007/s12274-023-6047-6
Topics:

1220

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 25 May 2023
Revised: 16 July 2023
Accepted: 27 July 2023
Published: 29 August 2023
© Tsinghua University Press 2023
Return