AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bio-inspired surface manipulation of halloysite nanotubes for high-performance flame retardant polylactic acid nanocomposites

Yaru Sun1,§Bin Yu2,§Yan Liu1,3( )Junbo Yan1Zixi Xu1Bo Cheng4Fenglei Huang1Jun Wang3
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
National Engineering Research Center of Flame Retardant Materials, Beijing Institute of Technology, Beijing 100081, China

§ Yaru Sun and Bin Yu contributed equally to this work.

Show Author Information

Graphical Abstract

Biomass nanofillers were grew well both on the inner and outer surface of halloysite nanotubes via green strategy. Mechanisms for bio-inspired halloysite nanotubes (b-HNTs) enhancing the multi-properties of polylactic acid (PLA) composite were proposed.

Abstract

High-performance flame-retardant polylactic acid (PLA) bio-composites based on biobased fillers to meet usage requirements represents a promising direction for creating a sustainable world. Although flame retardant PLA composites have been reported extensively, it still remains a huge challenge to develop mechanically robust. The flame retardant PLA composites due to plastication effect of organic flame retardants and poor compatibility of organic fillers with the matrix lead to the severe deterioration in mechanical properties. In this work, a bio-inspired surface manipulation strategy for halloysite nanotubes (HNTs) was proposed via a facile and green self-assembly process. The structure and morphology of bio-inspired HNTs (b-HNTs) proved that biomass nanofillers (PA-NA-Fe) grew well both within the lumen and on the surface of HNTs. The growth of biomass on the inner and outer surfaces of HNTs was inspired from wooden towards enhancing the interface compatibility and imparting multi-properties to PLA biopolymer. Excellent mechanical properties (tensile, thermomechanical and anti-impact mechanical), great fire safety (heat release and smoke emission), thermostability and improved electromagnetic interference shielding effectiveness of this well-designed PLA nanocomposite were realized. The mechanisms of the enhanced performances of the PLA bio-composites by loading b-HNTs were proposed. This work presents a facile and environmentally-friendly bio-inspired modification strategy for HNTs to fabricate high-performance, multi-functional polymer composites, which is also suitable for surface modification of many other nanomaterials, including nanofibers, nanotubes, nanowires, and nanosheets.

Electronic Supplementary Material

Download File(s)
12274_2023_6050_MOESM1_ESM.pdf (2.4 MB)

References

[1]

Xiong, Z. Q.; Zhang, Y.; Du, X. Y.; Song, P. A.; Fang, Z. P. Green and scalable fabrication of core–shell biobased flame retardants for reducing flammability of polylactic acid. ACS Sustainable Chem. Eng. 2019, 7, 8954–8963.

[2]

Wang, Y. D.; Yuan, J.; Ma, L.; Yin, X. Z.; Zhu, Z. M.; Song, P. G. Fabrication of anti-dripping and flame-retardant polylactide modified with chitosan derivative/aluminum hypophosphite. Carbohydr. Polym. 2022, 298, 120141.

[3]

Jing, J.; Zhang, Y.; Fang, Z. P.; Wang, D. Y. Core–shell flame retardant/graphene oxide hybrid: A self-assembly strategy towards reducing fire hazard and improving toughness of polylactic acid. Compos. Sci. Technol. 2018, 165, 161–167.

[4]

Zia, A. A.; Tian, X. Y.; Liu, T. F.; Zhou, J.; Ghouri, M. A.; Yun, J. X.; Li, W. D.; Zhang, M. Y.; Li, D. C.; Malakhov, A. V. Mechanical and energy absorption behaviors of 3D printed continuous carbon/Kevlar hybrid thread reinforced PLA composites. Compos. Struct. 2023, 303, 116386.

[5]

Xu, H.; Tong, X.; Zhang, Y. Y.; Li, Q. W.; Lu, W. B. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves. Compos. Sci. Technol. 2016, 127, 113–118.

[6]

Varsavas, S. D.; Kaynak, C. Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide. Compos. Commun. 2018, 8, 24–30.

[7]

Yang, L. N.; Han, P.; Gu, Z. Grafting of a novel hyperbranched polymer onto carbon fiber for interfacial enhancement of carbon fiber reinforced epoxy composites. Mater. Design 2021, 200, 109456.

[8]

Yang, X.; Tu, Q. Z.; Shen, X. M.; Pan, M.; Jiang, C. M.; Lai, X. T.; Xue, J. H. Synergistic modification by mercapto hyperbranched polysiloxane and functionalized graphene oxide on the surface of aramid fiber. Polym. Test. 2020, 91, 106783.

[9]

Li, S. P.; Yao, Y. Synergistic improvement of epoxy composites with multi-walled carbon nanotubes and hyperbranched polymers. Compos. Part B Eng. 2019, 165, 293–300.

[10]

Bax, B.; Müssig, J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos. Sci. Technol. 2008, 68, 1601–1607.

[11]

Dörrstein, J.; Scholz, R.; Schwarz, D.; Schieder, D.; Sieber, V.; Walther, F.; Zollfrank, C. Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites. Compos. Struct. 2018, 189, 349–356.

[12]

Chatterjee, A.; Kumar, S.; Singh, H. Tensile strength and thermal behavior of jute fibre reinforced polypropylene laminate composite. Compos. Commun. 2020, 22, 100483.

[13]

Samadam, A.; Vallepalli, R.; Kumar, K. N.; Sreekanth, M.; Goud, R. R. Mechanical properties evaluation and behaviour of cellulose-HDPE composite. Mater. Today Proc. 2022, 62, 3405–3410.

[14]

Bledzki, A. K.; Mamun, A. A.; Jaszkiewicz, A.; Erdmann, K. Polypropylene composites with enzyme modified abaca fibre. Compos. Sci. Technol. 2010, 70, 854–860.

[15]

Monteiro, S. N.; Terrones, L. A. H.; D'Almeida, J. R. M. Mechanical performance of coir fiber/polyester composites. Polym. Test. 2008, 27, 591–595.

[16]

Lundquist, L.; Marque, B.; Hagstrand, P. O.; Leterrier, Y.; Manson, J. A. E. Novel pulp fibre reinforced thermoplastic composites. Compos. Sci. Technol. 2003, 63, 137–152.

[17]

Li, P. D.; Hao, C.; Wang, H. H.; He, T.; Shu, T.; Li, C.; Yu, L. J.; Yan, N. Eco-friendly recyclable high performance ramie yarn reinforced polyimine vitrimer composites. Chem. Eng. J. 2023, 457, 141341.

[18]

Quiles-Carrillo, L.; Montanes, N.; Garcia-Garcia, D.; Carbonell-Verdu, A.; Balart, R.; Torres-Giner, S. Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Compos. Part B Eng. 2018, 147, 76–85.

[19]

Zhang, K. K.; Zong, L.; Tan, Y. Q.; Ji, Q.; Yun, W. C.; Shi, R.; Xia, Y. Z. Improve the flame retardancy of cellulose fibers by grafting zinc ion. Carbohydr. Polym. 2016, 136, 121–127.

[20]

Sun, Y. R.; Yuan, B. H.; Shang, S.; Zhang, H. M.; Shi, Y. Q.; Yu, B.; Qi, C. R.; Dong, H. R.; Chen, X. F.; Yang, X. L. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Compos. Part B Eng. 2020, 181, 107588.

[21]

Das, P.; Manna, S.; Behera, A. K.; Shee, M.; Basak, P.; Sharma, A. K. Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: A review. Environ. Res. 2022, 212, 113534.

[22]

Fu, L. J.; Yang, H. M.; Tang, A. D.; Hu, Y. H. Engineering a tubular mesoporous silica nanocontainer with well-preserved clay shell from natural halloysite. Nano Res. 2017, 10, 2782–2799.

[23]

Shang, S.; Ma, X.; Yuan, B. H.; Chen, G. Q.; Sun, Y. R.; Huang, C. Y.; He, S.; Dai, H. M.; Chen, X. F. Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene. Compos. Part B Eng. 2019, 177, 107371.

[24]

Han, Z. M.; Sun, W. B.; Yang, K. P.; Yang, H. B.; Liu, Z. X.; Li, D. H.; Yin, C. H.; Liu, H. C.; Zhao, Y. X.; Ling, Z. C. et al. An all-natural wood-inspired aerogel. Angew. Chem., Int. Ed. 2023, 135, e202211099.

[25]

Long, Y.; Yuan, B.; Ma, J. T. Epoxidation of alkenes efficiently catalyzed by Mo salen supported on surface-modified halloysite nanotubes. Chin. J. Catal. 2015, 36, 348–354.

[26]

Yuan, B. H.; Sun, Y. R.; Chen, X. F.; Shi, Y. Q.; Dai, H. M.; He, S. Poorly-/well-dispersed graphene: Abnormal influence on flammability and fire behavior of intumescent flame retardant. Compos. Part A Appl. Sci. Manuf. 2018, 109, 345–354.

[27]

Zhan, Y. Y.; Wu, X. J.; Wang, S. S.; Yuan, B. H.; Fang, Q.; Shang, S.; Cao, C. R.; Chen, G. Q. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid. Polym. Degrad. Stab. 2021, 191, 109684.

[28]

Mu, X. W.; Zhan, J.; Feng, X. M.; Yuan, B. H.; Qiu, S. L.; Song, L.; Hu, Y. Novel melamine/o-phthalaldehyde covalent organic frameworks nanosheets: Enhancement flame retardant and mechanical performances of thermoplastic polyurethanes. ACS Appl. Mater. Interfaces 2017, 9, 23017–23026.

[29]

Shao, Z. B.; Deng, C.; Tan, Y.; Yu, L.; Chen, M. J.; Chen, L.; Wang, Y. Z. Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. J. Mater. Chem. A 2014, 2, 13955–13965.

[30]

Cao, M.; Liu, B. W.; Zhang, L.; Peng, Z. C.; Zhang, Y. Y.; Wang, H.; Zhao, H. B.; Wang, Y. Z. Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Compos. Part B Eng. 2021, 225, 109309.

[31]

Wang, W.; Kan, Y. C.; Liew, K. M.; Song, L.; Hu, Y. Comparative investigation on combustion property and smoke toxicity of epoxy resin filled with α- and δ-MnO2 nanosheets. Compos. Part A Appl. Sci. Manuf. 2018, 107, 39–46.

[32]

Wang, W.; Kan, Y. C.; Pan, H. F.; Pan, Y.; Li, B. G.; Liew, K. M.; Hu, Y. Phosphorylated cellulose applied for the exfoliation of LDH: An advanced reinforcement for polyvinyl alcohol. Compos. Part A Appl. Sci. Manuf. 2017, 94, 170–177.

[33]

Cao, C. F.; Yu, B.; Huang, J.; Feng, X. L.; Lv, L. Y.; Sun, F. N.; Tang, L. C.; Feng, J. B.; Song, P. A.; Wang, H. Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning. ACS Nano 2022, 16, 20865–20876.

[34]

Pan, N.; Jin, Y. D.; Wang, X. Q.; Hu, X. P.; Chi, F. T.; Zou, H.; Xia, C. Q. A self-assembled supramolecular material containing phosphoric acid for ultrafast and efficient capture of uranium from acidic solutions. ACS Sustainable Chem. Eng. 2019, 7, 950–960.

[35]

Sun, Y. R.; Yuan, B. H.; Chen, X. F.; Li, K. Y.; Wang, L. C.; Yun, Y. L.; Fan, A. Suppression of methane/air explosion by kaolinite-based multi-component inhibitor. Powder Technol. 2019, 343, 279–286.

[36]

Lecouvet, B.; Sclavons, M.; Bourbigot, S.; Bailly, C. Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polym. Degrad. Stab. 2013, 98, 1993–2004.

[37]

Salmieri, S.; Islam, F.; Khan, R. A.; Hossain, F. M.; Ibrahim, H. M. M.; Miao, C. W.; Hamad, W. Y.; Lacroix, M. Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications-part B: Effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose 2014, 21, 4271–4285.

[38]

Liu, M. X.; Zhang, Y.; Zhou, C. R. Nanocomposites of halloysite and polylactide. Appl. Clay Sci. 2013, 75–76, 52–59.

[39]

Dong, Y.; Marshall, J.; Haroosh, H. J.; Mohammadzadehmoghadam, S.; Liu, D. Y.; Qi, X. W.; Lau, K. T. Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: Influence of HNT content and modification. Compos. Part A Appl. Sci. Manuf. 2015, 76, 28–36.

[40]

Ahamad, A.; Kumar, P. Effect of reinforcing ability of halloysite nanotubes in styrene-butadiene rubber nanocomposites. Compos. Commun. 2020, 22, 100440.

[41]

Zhou, Y. Y.; Lin, Y. C.; Tawiah, B.; Sun, J.; Yuen, R. K. K.; Fei, B. DOPO-decorated two-dimensional mxene nanosheets for flame-retardant, ultraviolet-protective, and reinforced polylactide composites. ACS Appl. Mater. Interfaces 2021, 13, 21876–21887.

[42]

Liu, Z.; Fan, X. L.; Han, M. Y.; Li, H.; Zhang, J. L.; Chen, L. X.; Zhu, Q. J.; Gu, J. W. Branched fluorine/adamantane interfacial compatibilizer for PBO fibers/cyanate ester wave-transparent laminated composites. Chin. J. Chem. 2023, 41, 939–950.

[43]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[44]

Wang, W.; Yuen, A. C. Y.; Long, H.; Yang, W.; Li, A.; Song, L.; Hu, Y.; Yeoh, G. H. Random nano-structuring of PVA/MXene membranes for outstanding flammability resistance and electromagnetic interference shielding performances. Compos. Part B Eng. 2021, 224, 109174.

[45]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[46]

He, H. L.; Duan, Z. W.; Wang, Z. Q. Anomalously enhanced toughness of poly (lactic acid) nanocomposites by core–shell particles with high thickness soft shell. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105676.

[47]

Baghaei, B.; Skrifvars, M.; Salehi, M.; Bashir, T.; Rissanen, M.; Nousiainen, P. Novel aligned hemp fibre reinforcement for structural biocomposites: Porosity, water absorption, mechanical performances and viscoelastic behaviour. Compos. Part A Appl. Sci. Manuf. 2014, 61, 1–12.

[48]

Sharma, S.; Singh, A. A.; Majumdar, A.; Butola, B. S. Harnessing the ductility of polylactic acid/ halloysite nanocomposites by synergistic effects of impact modifier and plasticiser. Compos. Part B Eng. 2020, 188, 107845.

[49]

Krishnaiah, P.; Ratnam, C. T.; Manickam, S. Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Appl. Clay Sci. 2017, 135, 583–595.

[50]

Wang, Y. D.; Liu, L. Y.; Ma, L.; Yuan, J.; Wang, L. X.; Wang, H.; Xiao, F.; Zhu, Z. M. Transparent, flame retardant, mechanically strengthened and low dielectric EP composites enabled by a reactive bio-based P/N flame retardant. Polym. Degrad. Stab. 2022, 204, 110106.

[51]

Wang, H.; Yuan, J.; Wang, Y. D.; Ma, Y. M.; Lyu, S. S.; Zhu, Z. M. A nitrogen heterocyclic/phosphaphenanthrene derivative as a reactive additive for simultaneous improvement of flame retardancy, mechanical and dielectric properties of epoxy resins. Polym. Degrad. Stab. 2022, 199, 109909.

[52]

Zhang, S. S.; Wang, S.; Hu, T.; Xuan, S. H.; Jiang, H.; Gong, X. L. Study the safeguarding performance of shear thickening gel by the mechanoluminescence method. Compos. Part B Eng. 2020, 180, 107564.

[53]

Ye, Y. P.; Chen, H. B.; Wu, J. S.; Ye, L. High impact strength epoxy nanocomposites with natural nanotubes. Polymer 2007, 48, 6426–6433.

[54]

Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

[55]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional T3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[56]

Stoclet, G.; Sclavons, M.; Lecouvet, B.; Devaux, J.; Van Velthem, P.; Boborodea, A.; Bourbigot, S.; Sallem-Idrissi, N. Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: Structure, mechanical properties and fire performance. RSC Adv. 2014, 4, 57553–57563.

[57]

Wang, W.; Kan, Y. C.; Liu, J. J.; Liew, K. M.; Liu, L.; Hu, Y. Self-assembly of zinc hydroxystannate on amorphous hydrous TiO2 solid sphere for enhancing fire safety of epoxy resin. J. Hazard. Mater. 2017, 340, 263–271.

[58]

Wang, W.; Yuan, Y.; Yu, B.; Liew, K. M.; Yuen, R. K. K.; Liu, J. J.; Hu, Y. Controlled self-template synthesis of manganese-based cuprous oxide nanoplates towards improved fire safety properties of epoxy composites. J. Hazard. Mater. 2020, 387, 122006.

[59]

Wang, Y. D.; Ma, L.; Yuan, J.; Zhu, Z. M.; Liu, X. M.; Li, D. S.; He, L. Q.; Xiao, F. Furfural-based P/N/S flame retardant towards high-performance epoxy resins with flame retardancy, toughness, low dielectric properties and UV resistance. Polym. Degrad. Stab. 2023, 212, 110343.

Nano Research
Pages 1595-1606
Cite this article:
Sun Y, Yu B, Liu Y, et al. Bio-inspired surface manipulation of halloysite nanotubes for high-performance flame retardant polylactic acid nanocomposites. Nano Research, 2024, 17(3): 1595-1606. https://doi.org/10.1007/s12274-023-6050-y
Topics:
Part of a topical collection:

886

Views

29

Crossref

33

Web of Science

33

Scopus

0

CSCD

Altmetrics

Received: 25 June 2023
Revised: 22 July 2023
Accepted: 28 July 2023
Published: 29 August 2023
© Tsinghua University Press 2023
Return