AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Template-assisted growth of Co-BaTiO3 vertically aligned nanocomposite thin films with strong magneto-optical coupling effect

Zedong Hu1Juanjuan Lu2Hongyi Dou2Jianan Shen2James P. Barnard2Juncheng Liu2Xinghang Zhang2Haiyan Wang1,2( )
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA
School of Materials Engineering, Purdue University, West Lafayette, IN 47906, USA
Show Author Information

Graphical Abstract

Template-assisted Co-BaTiO3 vertically aligned nanocomposite thin films display magnetic anisotropy and strong magneto-optical coupling effect.

Abstract

Oxide-metal based nanocomposite thin films have attracted great interests owing to their unique anisotropic structure and physical properties. A wide range of Au-based oxide-metal nanocomposites have been demonstrated, while other metal systems are scarce due to the challenges in the initial nucleation and growth as well as possible interdiffusions of the metallic nanopillars. In this work, a unique anodic aluminum oxide (AAO) template was used to grow a thin Co seed layer and the following self-assembled metal-oxide (Co-BaTiO3) vertically aligned nanocomposite thin film layer. The AAO template allows the uniform growth of Co-seeds and successfully deposition of highly ordered Co pillars (with diameter < 5 nm and interval between pillars < 10 nm) inside the oxide matrix. Significant magnetic anisotropy and strong magneto-optical coupling properties have been observed. A thin Au-BaTiO3 template was also later introduced for further enhanced nucleation and ordered growth of the Co-nanopillars. Taking the advantage of such a unique nanostructure, a large out-of-plane (OP) coercive field (Hc) of ~ 5000 Oe has been achieved, making the nanocomposite an ideal candidate for high density perpendicular magnetic tunneling junction (p-MTJ). A strong polar magneto-optical Kerr effect (MOKE) has also been observed which inspires a novel optical-based reading method of the MTJ states.

Electronic Supplementary Material

Download File(s)
12274_2023_6054_MOESM1_ESM.pdf (675.1 KB)

References

[1]

Li, L. G.; Sun, L. Y.; Gomez-Diaz, J. S.; Hogan, N. L.; Lu, P.; Khatkhatay, F.; Zhang, W. R.; Jian, J.; Huang, J. J.; Su, Q. et al. Self-assembled epitaxial Au-oxide vertically aligned nanocomposites for nanoscale metamaterials. Nano Lett. 2016, 16, 3936–3943.

[2]

Huang, J. J.; Jin, T. N.; Misra, S.; Wang, H.; Qi, Z. M.; Dai, Y. M.; Sun, X.; Li, L. G.; Okkema, J.; Chen, H. T. et al. Tailorable optical response of Au-LiNbO3 hybrid metamaterial thin films for optical waveguide applications. Adv. Opt. Mater. 2018, 6, 1800510.

[3]

Kalaswad, M.; Zhang, D.; Gao, X.; Contreras, L. L.; Wang, H.; Wang, X.; Wang, H. Integration of hybrid plasmonic Au-BaTiO3 metamaterial on silicon substrates. ACS Appl. Mater. Interfaces 2019, 11, 45199–45206.

[4]

Misra, S.; Li, L. G.; Zhang, D.; Jian, J.; Qi, Z. M.; Fan, M.; Chen, H. T.; Zhang, X. H.; Wang, H. Y. Self-assembled ordered three-phase Au-BaTiO3-ZnO vertically aligned nanocomposites achieved by a templating method. Adv. Mater. 2019, 31, 1806529.

[5]

Paldi, R. L.; Sun, X.; Wang, X. J.; Zhang, X. H.; Wang, H. Y. Strain-driven in-plane ordering in vertically aligned ZnO-Au nanocomposites with highly correlated metamaterial properties. ACS Omega 2020, 5, 2234–2241.

[6]

Zhang, D.; Qi, Z. M.; Jian, J.; Huang, J. J.; Phuah, X. L.; Zhang, X. H.; Wang, H. Y. Thermally stable Au-BaTiO3 nanoscale hybrid metamaterial for high-temperature plasmonic applications. ACS Appl. Nano Mater. 2020, 3, 1431–1437.

[7]

Paldi, R. L.; Wang, X. J.; Sun, X.; He, Z. H.; Qi, Z. M.; Zhang, X. H.; Wang, H. Y. Vertically aligned AgxAu1−x alloyed nanopillars embedded in ZnO as nanoengineered low-loss hybrid plasmonic metamaterials. Nano Lett. 2020, 20, 3778–3785.

[8]

Misra, S.; Zhang, D.; Qi, Z. M.; Li, D. F.; Lu, J. J.; Chen, H. T.; Wang, H. Y. Morphology control of self-assembled three-phase Au-BaTiO3-ZnO hybrid metamaterial for tunable optical properties. Cryst. Growth Des. 2020, 20, 6101–6108.

[9]

Liu, J. C.; Wang, X. J.; Gao, X. Y.; Wang, H.; Jian, J.; Huang, J. J.; Sun, X.; Qi, Z. M.; Misra, S.; He, Z. H. et al. Multifunctional self-assembled BaTiO3-Au nanocomposite thin films on flexible mica substrates with tunable optical properties. Appl. Mater. Today 2020, 21, 100856.

[10]

Lu, J.; Paldi, R. L.; Pachaury, Y.; Zhang, D.; Wang, H.; Kalaswad, M.; Sun, X.; Liu, J.; Phuah, X. L.; Zhang, X. et al. Ordered hybrid metamaterial of La0.7Sr0.3MnO3-Au vertically aligned nanocomposites achieved on templated SrTiO3 substrate. Mater. Today Nano 2021, 15, 100121.

[11]

Huang, J. J.; Wang, H.; Qi, Z. M.; Lu, P.; Zhang, D.; Zhang, B.; He, Z. H.; Wang, H. Y. Multifunctional metal-oxide nanocomposite thin film with plasmonic Au nanopillars embedded in magnetic La0.67Sr0.33MnO3 matrix. Nano Lett. 2021, 21, 1032–1039.

[12]

Zhang, D.; Wang, H. Y. Self-assembled metal-dielectric hybrid metamaterials in vertically aligned nanocomposite form with tailorable optical properties and coupled multifunctionalities. Adv. Photonics Res. 2021, 2, 2000174.

[13]

Rutherford, B. X.; Dou, H. Y.; Zhang, B.; He, Z. H.; Barnard, J. P.; Paldi, R. L.; Wang, H. Y. Single-step fabrication of Au-Fe-BaTiO3 nanocomposite thin films embedded with non-equilibrium Au-Fe alloyed nanostructures. Nanomaterials 2022, 12, 3460.

[14]

Zhang, D.; Gao, X. Y.; Lu, J. J.; Lu, P.; Deitz, J.; Shen, J. N.; Dou, H. Y.; He, Z. H.; Shang, Z. X.; Wade, C. A. et al. Novel self-assembled two-dimensional layered oxide structure incorporated with Au nanoinclusions towards multifunctionalities. Nano Res. 2023, 16, 1465–1472.

[15]

Huang, J. J.; Li, L. G.; Lu, P.; Qi, Z. M.; Sun, X.; Zhang, X. H.; Wang, H. Y. Self-assembled Co-BaZrO3 nanocomposite thin films with ultra-fine vertically aligned Co nanopillars. Nanoscale 2017, 9, 7970–7976.

[16]

Fan, M.; Zhang, B.; Wang, H.; Jian, J.; Sun, X.; Huang, J. J.; Li, L. G.; Zhang, X. H.; Wang, H. Y. Self-organized epitaxial vertically aligned nanocomposites with long-range ordering enabled by substrate nanotemplating. Adv. Mater. 2017, 29, 1606861.

[17]

Huang, J. J.; Qi, Z. M.; Li, L. G.; Wang, H.; Xue, S. C.; Zhang, B.; Zhang, X. H.; Wang, H. Y. Self-assembled vertically aligned Ni nanopillars in CeO2 with anisotropic magnetic and transport properties for energy applications. Nanoscale 2018, 10, 17182–17188.

[18]

Zhang, B.; Huang, J.; Rutherford, B. X.; Lu, P.; Misra, S.; Kalaswad, M.; He, Z.; Gao, X.; Sun, X.; Li, L. et al. Tunable, room-temperature multiferroic Fe-BaTiO3 vertically aligned nanocomposites with perpendicular magnetic anisotropy. Mater. Today Nano 2020, 11, 100083.

[19]

Kalaswad, M.; Zhang, B.; Wang, X. J.; Wang, H.; Gao, X. Y.; Wang, H. Y. Integration of highly anisotropic multiferroic BaTiO3-Fe nanocomposite thin films on Si towards device applications. Nanoscale Adv. 2020, 2, 4172–4178.

[20]

Wang, X. J.; Qi, Z. M.; Liu, J. C.; Wang, H. H.; Xu, X. S.; Zhang, X. H.; Wang, H. Y. Strong interfacial coupling of tunable Ni-NiO nanocomposite thin films formed by self-decomposition. ACS Appl. Mater. Interfaces 2021, 13, 39730–39737.

[21]

Rutherford, B. X.; Zhang, B.; Kalaswad, M.; He, Z. H.; Zhang, D.; Wang, X. J.; Liu, J. C.; Wang, H. Y. Tunable three-phase Co-CeO2-BaTiO3 hybrid metamaterials with nano-mushroom-like structure for tailorable multifunctionalities. ACS Appl. Nano Mater. 2022, 5, 6297–6304.

[22]

Liu, J. C.; Wang, X. J.; Gao, X. Y.; Wang, H.; Zhang, B.; Zhang, D.; Kalaswad, M.; Huang, J. J.; Wang, H. Y. Integration of self-assembled BaZrO3-Co vertically aligned nanocomposites on mica substrates toward flexible spintronics. Cryst. Growth Des. 2022, 22, 718–725.

[23]

Paldi, R. L.; Kalaswad, M.; Lu, J. J.; Barnard, J. P.; Richter, N. A.; Si, M. W.; Bhatt, N. A.; Ye, P. D.; Sarma, R.; Siddiqui, A. et al. ZnO-ferromagnetic metal vertically aligned nanocomposite thin films for magnetic, optical and acoustic metamaterials. Nanoscale Adv. 2023, 5, 247–254.

[24]

Su, Q.; Zhang, W. R.; Lu, P.; Fang, S. M.; Khatkhatay, F.; Jian, J.; Li, L. G.; Chen, F. L.; Zhang, X. H.; MacManus-Driscoll, J. L. et al. Self-assembled magnetic metallic nanopillars in ceramic matrix with anisotropic magnetic and electrical transport properties. ACS Appl. Mater. Interfaces 2016, 8, 20283–20291.

[25]

Zhang, D.; Lu, P.; Misra, S.; Wissel, A.; He, Z. H.; Qi, Z. M.; Gao, X. Y.; Sun, X.; Liu, J. C.; Lu, J. J. et al. Design of 3D oxide-metal hybrid metamaterial for tailorable light-matter interactions in visible and near-infrared region. Adv. Opt. Mater. 2021, 9, 2001154.

[26]

Huang, J.; Wang, X.; Phuah, X. L.; Lu, P.; Qi, Z.; Wang, H. Plasmonic Cu nanostructures in ZnO as hyperbolic metamaterial thin films. Mater. Today Nano 2019, 8, 100052.

[27]

Masuda, T.; Fukumitsu, H.; Fugane, K.; Togasaki, H.; Matsumura, D.; Tamura, K.; Nishihata, Y.; Yoshikawa, H.; Kobayashi, K.; Mori, T. et al. Role of cerium oxide in the enhancement of activity for the oxygen reduction reaction at Pt-CeOx nanocomposite electrocatalyst - an in situ electrochemical X-ray absorption fine structure study. J. Phys. Chem. C 2012, 116, 10098–10102.

[28]

Pyo, S.; Eom, W.; Kim, Y. J.; Lee, S. H.; Han, T. H.; Ryu, W. H. Super-expansion of assembled reduced graphene oxide interlayers by segregation of Al nanoparticle pillars for high-capacity Na-Ion battery anodes. ACS Appl. Mater. Interfaces 2020, 12, 23781–23788.

[29]

Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112–115.

[30]

Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; Von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513–1515.

[31]

Yao, J.; Liu, Z. W.; Liu, Y. M.; Wang, Y.; Sun, C.; Bartal, G.; Stacy, A. M.; Zhang, X. Optical negative refraction in bulk metamaterials of nanowires. Science 2008, 321, 930.

[32]

Misra, S.; Wang, H. Y. Review on the growth, properties and applications of self-assembled oxide-metal vertically aligned nanocomposite thin films-current and future perspectives. Mater. Horiz. 2021, 8, 869–884.

[33]

Wang, X. J.; Wang, H. Y. Recent advances in vertically aligned nanocomposites with tunable optical anisotropy: Fundamentals and beyond. Chemosensors 2021, 9, 145.

[34]

Chen, A. P.; Bi, Z. X.; Tsai, C. F.; Lee, J.; Su, Q.; Zhang, X. H.; Jia, Q. X.; MacManus-Driscoll, J. L.; Wang, H. Y. Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5: (ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 2011, 21, 2423–2429.

[35]

Khatkhatay, F.; Chen, A. P.; Lee, J. H.; Zhang, W. R.; Abdel-Raziq, H.; Wang, H. Y. Ferroelectric properties of vertically aligned nanostructured BaTiO3-CeO2 thin films and their integration on silicon. ACS Appl. Mater. Interfaces 2013, 5, 12541–12547.

[36]

Fan, M.; Zhang, W. R.; Jian, J.; Huang, J. J.; Wang, H. Y. Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3: LaFeO3 nanocomposite thin films. APL Mater. 2016, 4, 076105.

[37]

Gao, X. Y.; Li, L. G.; Jian, J.; Huang, J. J.; Sun, X.; Zhang, D.; Wang, H. Y. Tunable low-field magnetoresistance properties in (La0.7Ca0.3MnO3)1−x: (CeO2)x vertically aligned nanocomposite thin films. Appl. Phys. Lett. 2019, 115, 053103.

[38]

Gao, X. Y.; Zhang, D.; Wang, X. J.; Jian, J.; He, Z. H.; Dou, H. Y.; Wang, H. Y. Vertically aligned nanocomposite (BaTiO3)0.8:  (La0.7Sr0.3MnO3)0.2 thin films with anisotropic multifunctionalities. Nanoscale Adv. 2020, 2, 3276–3283.

[39]

Huang, J. J.; Wang, H.; Wang, X. J.; Gao, X. Y.; Liu, J. C.; Wang, H. Y. Exchange bias in a La0.67Sr0.33MnO3/NiO heterointerface integrated on a flexible mica substrate. ACS Appl. Mater. Interfaces 2020, 12, 39920–39925.

[40]

Dou, H. Y.; Gao, X. Y.; Zhang, D.; Dhole, S.; Qi, Z. M.; Yang, B.; Hasan, M. N.; Seo, J. H.; Jia, Q. X.; Hellenbrand, M. et al. Electroforming-free HfO2: CeO2 vertically aligned nanocomposite memristors with anisotropic dielectric response. ACS Appl. Electron. Mater. 2021, 3, 5278–5286.

[41]

Li, L. G.; Misra, S.; Gao, X. Y.; Liu, J. C.; Wang, H.; Huang, J. J.; Zhang, B.; Lu, P.; Wang, H. Y. Novel vertically aligned nanocomposite of Bi2WO6-Co3O4 with room-temperature multiferroic and anisotropic optical response. Nano Res. 2021, 14, 4789–4794.

[42]

Zhang, Y. Z.; Zhang, D.; Liu, J. C.; Lu, P.; Deitz, J.; Shen, J. N.; He, Z. H.; Zhang, X. H.; Wang, H. Y. Self-assembled HfO2-Au nanocomposites with ultra-fine vertically aligned Au nanopillars. Nanoscale 2022, 14, 11979–11987.

[43]

Song, J.; Zhang, D.; Lu, P.; Wang, H.; Xu, X.; Meyerson, M. L.; Rosenberg, S. G.; Deitz, J.; Liu, J.; Wang, X. et al. Anisotropic optical and magnetic response in self-assembled TiN-CoFe2 nanocomposites. Mater. Today Nano 2023, 22, 100316.

[44]

Kalaswad, M.; Zhang, D.; Rutherford, B. X.; Lu, J. J.; Barnard, J. P.; He, Z. H.; Liu, J. C.; Wang, H. H.; Xu, X. S.; Wang, H. Y. TiN-Fe vertically aligned nanocomposites integrated on silicon as a multifunctional platform toward device applications. Crystals 2022, 12, 849.

[45]

Wang, X. J.; Jian, J.; Wang, H. H.; Liu, J. C.; Pachaury, Y.; Lu, P.; Rutherford, B. X.; Gao, X. Y.; Xu, X. S.; El-Azab, A. et al. Nitride-oxide-metal heterostructure with self-assembled core–shell nanopillar arrays: Effect of ordering on magneto-optical properties. Small 2021, 17, 2007222.

[46]

Huang, J. J.; MacManus-Driscoll, J. L.; Wang, H. Y. New epitaxy paradigm in epitaxial self-assembled oxide vertically aligned nanocomposite thin films. J. Mater. Res. 2017, 32, 4054–4066.

[47]

Starkey, K.; Ahmad, A.; Lu, J. J.; Wang, H. Y.; El-Azab, A. A generalized 3D elastic model for nanoscale, self-assembled oxide-metal thin films with pillar-in-matrix configurations. Acta Mater. 2022, 228, 117779.

[48]

Chen, A. P.; Jia, Q. X. A pathway to desired functionalities in vertically aligned nanocomposites and related architectures. MRS Bull. 2021, 46, 115–122.

[49]

Zhang, D.; Kalaswad, M.; Wang, H. Self-assembled vertically aligned nanocomposite systems integrated on silicon substrate: Progress and future perspectives. J. Vac. Sci. Technol. A 2022, 40, 010802.

[50]

Wang, X. J.; Wang, H. Y. Self-assembled nitride-metal nanocomposites: Recent progress and future prospects. Nanoscale 2020, 12, 20564–20579.

[51]

Comes, R.; Liu, H. X.; Khokhlov, M.; Kasica, R.; Lu, J. W.; Wolf, S. A. Directed self-assembly of epitaxial CoFe2O4-BiFeO3 multiferroic nanocomposites. Nano Lett. 2012, 12, 2367–2373.

[52]

Lu, J. J.; Zhang, D.; Paldi, R. L.; He, Z. H.; Lu, P.; Deitz, J.; Ahmad, A.; Dou, H. Y.; Wang, X. J.; Liu, J. C. et al. Abnormal in-plane epitaxy and formation mechanism of vertically aligned Au nanopillars in self-assembled CeO2-Au metamaterial systems. Mater. Horiz. 2023, 10, 3101–3113.

[53]

Huang, J. J.; Phuah, X. L.; McClintock, L. M.; Padmanabhan, P.; Vikrant, K. S. N.; Wang, H. H.; Zhang, D.; Wang, H.; Lu, P.; Gao, X. Y. et al. Core−shell metallic alloy nanopillars-in-dielectric hybrid metamaterials with magneto-plasmonic coupling. Mater. Today 2021, 51, 39–47.

[54]

Zhang, D.; Misra, S.; Li, L. G.; Wang, X. J.; Jian, J.; Lu, P.; Gao, X. Y.; Sun, X.; Qi, Z. M.; Kalaswad, M. et al. Tunable optical properties in self-assembled oxide-metal hybrid thin films via Au-phase geometry control: From nanopillars to nanodisks. Adv. Opt. Mater. 2020, 8, 1901359.

[55]

Whitney, T. M.; Searson, P. C.; Jiang, J. S.; Chien, C. L. Fabrication and magnetic properties of arrays of metallic nanowires. Science 1993, 261, 1316–1319.

Nano Research
Pages 3130-3138
Cite this article:
Hu Z, Lu J, Dou H, et al. Template-assisted growth of Co-BaTiO3 vertically aligned nanocomposite thin films with strong magneto-optical coupling effect. Nano Research, 2024, 17(4): 3130-3138. https://doi.org/10.1007/s12274-023-6054-7
Topics:

654

Views

2

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 23 May 2023
Revised: 26 July 2023
Accepted: 29 July 2023
Published: 02 September 2023
© Tsinghua University Press 2023
Return