AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-powered flexible fingerprint-recognition display based on a triboelectric nanogenerator

Wandi Chen1,§Haonan Wang1,§Yibin Lin1Xinyan Gan1Heng Tang1Yongai Zhang1,2( )Qun Yan1,2Tailiang Guo1,2Xiongtu Zhou1,2( )Chaoxing Wu1,2( )
School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350116, China

§ Wandi Chen and Haonan Wang contributed equally to this work.

Show Author Information

Graphical Abstract

A self-powered alternating current electroluminescent (ACEL) device based on friction triboelectric nanogenerator (TENG) has been fabricated, combining the human body potential to prepare a single electrical level ACEL and TENG to enable self-powered fingerprint display recognition.

Abstract

In the time of Internet of Things (IoT), alternating current electroluminescence (ACEL) has unique advantages in the fields of smart display and human–computer interaction. However, their reliance on external high-voltage AC power supplies poses challenges in terms of wearability and limits their practical application. This paper proposed an innovative scheme for preparing a feather triboelectric nanogenerator (F-TENG) using recyclable and environmentally friendly material. The highest open-circuit voltage, short-circuit current, and transferred charge of SF6-treated F-TENGs can reach 449 V, 63 μA, and 152 nC, which enables easy lighting of BaTiO3-doped ACEL devices. Using a human electrical potential, a single-electrode F-TENG is combined with ACEL device for self-powered fingerprint recognition display. These works achieve self-powered flexible wearable ACEL devices, which are not only efficient and portable but also have good application prospects in the human–computer interaction, functional displays, and wearable electronic devices.

Electronic Supplementary Material

Download File(s)
12274_2023_6055_MOESM1_ESM.pdf (883.5 KB)

References

[1]

Xu, J. H.; Wei, X. L.; Li, R. N.; Shi, Y. P.; Peng, Y. T.; Wu, Z. Y.; Wang, Z. L. Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Res. 2022, 15, 6483–6489.

[2]

Huo, X. Q.; Wei, X. L.; Wang, B. C.; Cao, X. L.; Xu, J. H.; Yin, J. X.; Wu, Z. Y.; Wang, Z. L. Intelligent electronic passworded locker with unique and personalized security barriers for home security. Nano Res. 2023, 16, 7568–7574.

[3]

Pradel, K. C.; Fukata, N. Systematic optimization of triboelectric nanogenerator performance through surface micropatterning. Nano Energy 2021, 83, 105856.

[4]

Eo, Y. J.; Yoo, G. Y.; Kang, H.; Lee, Y. K.; Kim, C. S.; Oh, J. H.; Lee, K. N.; Kim, W.; Do, Y. R. Enhanced DC-operated electroluminescence of forwardly aligned p/MQW/n InGaN nanorod LEDs via DC offset-AC dielectrophoresis. ACS Appl. Mater. Interfaces 2017, 9, 37912–37920.

[5]

Lee, B.; Oh, J. Y.; Cho, H.; Joo, C. W.; Yoon, H.; Jeong, S.; Oh, E.; Byun, J.; Kim, H.; Lee, S. et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 2020, 11, 663.

[6]

Sun, Y. S.; Zhu, L. P.; Yang, J.; Zhang, J. J.; Chen, B. D.; Wang, Z. L. Flexible alternating-current electroluminescence plunging to below 1 Hz frequency by triboelectrification. Adv. Opt. Mater. 2022, 10, 2101918.

[7]

Li, J. Y.; Zhang, Z. W.; Luo, X. X.; Zhu, L. P.; Wang, Z. L. Triboelectric leakage-field-induced electroluminescence based on ZnS:Cu. ACS Appl. Mater. Interfaces 2022, 14, 4775–4782.

[8]

Yin, J. X.; Huo, X. Q.; Cao, X. L.; Li, R. N.; Zhou, Y. X.; Jiang, T.; Wang, L. F.; Wu, Z. Y.; Wang, Z. L. Intelligent electronic password locker based on the mechanoluminescence effect for smart home. ACS Mater. Lett. 2023, 5, 11–18.

[9]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[10]

Zhang, S. C.; Qu, C. M.; Xiao, Y.; Liu, H. Y.; Song, G. F.; Xu, Y. Flexible alternating current electroluminescent devices integrated with high voltage triboelectric nanogenerators. Nanoscale 2022, 14, 4244–4253.

[11]

Xia, K. Q.; Wu, D.; Fu, J. M.; Hoque, N. A.; Ye, Y.; Xu, Z. W. A high-output triboelectric nanogenerator based on nickel-copper bimetallic hydroxide nanowrinkles for self-powered wearable electronics. J. Mater. Chem. A 2020, 8, 25995–26003.

[12]

Xia, K. Q.; Zhu, Z. Y.; Zhang, H. Z.; Du, C. L.; Xu, Z. W.; Wang, R. J. Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 2018, 50, 571–580.

[13]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[14]

Zi, Y. L.; Wang, Z. L. W. Nanogenerators: An emerging technology towards nanoenergy. APL Mater. 2017, 5, 074103.

[15]

Wei, X. L.; Wang, B. C.; Wu, Z. Y.; Wang, Z. L. An open-environment tactile sensing system: Toward simple and efficient material identification. Adv. Mater. 2022, 34, 2203073.

[16]

Park, J. H.; Wu, C. X.; Sung, S.; Kim, T. W. Ingenious use of natural triboelectrification on the human body for versatile applications in walking energy harvesting and body action monitoring. Nano Energy 2019, 57, 872–878.

[17]

Sun, H. Y.; Lu, Y.; Chen, Y. Y.; Yue, Y. Y.; Jiang, S. H.; Xu, X. W.; Mei, C. T.; Xiao, H. N.; Han, J. Q. Flexible environment-tolerant electroluminescent devices based on nanocellulose-mediated transparent electrodes. Carbohydr. Polym. 2022, 296, 119891.

[18]

Lin, Y. B.; Chen, W. D.; Ye, J. Y.; Xu, J. J.; Gan, X. Y.; Peng, Y. Y.; Zhou, X. T.; Guo, T. L.; Zhang, Y. A.; Wu, C. X. Ingenious integration of electroluminescent devices with natural triboelectrification for wearable display by using epidermal potential as stimulation bridge. Opt. Mater. 2023, 137, 113627.

[19]

Liao, X. Q.; Song, W. T.; Zhang, X. Y.; Yan, C. Q.; Li, T. L.; Ren, H. L.; Liu, C. Z.; Wang, Y. T.; Zheng, Y. J. A bioinspired analogous nerve towards artificial intelligence. Nat. Commun. 2020, 11, 268.

[20]

Liao, X. Q.; Song, W. T.; Zhang, X. Y.; Jin, H. R.; Liu, S. Y.; Wang, Y. T.; Thean, A. V. Y.; Zheng, Y. J. An artificial peripheral neural system based on highly stretchable and integrated multifunctional sensors. Adv. Funct. Mater. 2021, 31, 2101107.

[21]

Wei, C.; Lin, W. S.; Liang, S. F.; Chen, M. J.; Zheng, Y. J.; Liao, X. Q.; Chen, Z. An all-in-one multifunctional touch sensor with carbon-based gradient resistance elements. Nano-Micro Lett. 2022, 14, 131.

[22]

Niu, S. M.; Zhou, Y. S.; Wang, S. H.; Liu, Y.; Lin, L.; Bando, Y.; Hu, Y. F.; Wang, Z. L. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy 2014, 8, 150–156.

[23]

Ebers, J. J.; Moll, J. L. Large-signal behavior of junction transistors. Proc. IRE 1954, 42, 1761–1772.

[24]

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

[25]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

[26]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

[27]

Szmigiel, D.; Domański, K.; Prokaryn, P.; Grabiec, P.; Sobczak, J. W. The effect of fluorine-based plasma treatment on morphology and chemical surface composition of biocompatible silicone elastomer. Appl. Surf. Sci. 2006, 253, 1506–1511.

[28]

van der Drift, E.; Zijlstra, T.; Cheung, R.; Werner, K.; Radelaar, S. Reactive ion etching mechanism study on Si/GexSi1−x. Microelectron. Eng. 1994, 23, 343–348.

[29]

Mansano, R. D.; Verdonck, P.; Maciel, H. S. Mechanisms of surface roughness induced in silicon by fluorine containing plasmas. Vacuum 1997, 48, 677–679.

[30]

Chen, W. D.; Wang, W. W.; Li, S. Y.; Kang, J. X.; Zhang, Y. A.; Yan, Q.; Guo, T. L.; Zhou, X. T.; Wu, C. X. Self-powered liquid crystal lens based on a triboelectric nanogenerator. Nano Energy 2023, 107, 108143.

[31]

Liu, H.; Zhang, J.; Liu, W. F.; Bao, N.; Cheng, C.; Zhang, C. L. Preparation and characterization of activated charcoals from a new source: Feather. Mater. Lett. 2012, 87, 17–19.

[32]

Esparza, Y.; Ullah, A.; Boluk, Y.; Wu, J. P. Preparation and characterization of thermally crosslinked poly(vinyl alcohol)/feather keratin nanofiber scaffolds. Mater. Des. 2017, 133, 1–9.

[33]

Zhang, H.; Chang, Q. Y. Fluorine-doped amorphous carbon-coated magnesium silicate hydroxide as lubricant additive and atomic simulation. Tribol. Lett. 2021, 69, 11.

[34]

López, G. P.; Castner, D. G.; Ratner, B. D. XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 1991, 17, 267–272.

[35]

Zhou, Y. L.; Zhao, C. S.; Wang, J. C.; Li, Y. Z.; Li, C. X.; Zhu, H. Y.; Feng, S. X.; Cao, S. T.; Kong, D. S. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 2019, 1, 511–518.

[36]

Muhammed, A.; Pais, A. R. Secure latent fingerprint storage and self-recovered reconstruction using POB number system. Pattern Recognit. Lett. 2023, 167, 107–114.

[37]

Hong, L.; Wan, Y. F.; Jain, A. Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 777–789.

Nano Research
Pages 3021-3028
Cite this article:
Chen W, Wang H, Lin Y, et al. Self-powered flexible fingerprint-recognition display based on a triboelectric nanogenerator. Nano Research, 2024, 17(4): 3021-3028. https://doi.org/10.1007/s12274-023-6055-6
Topics:

718

Views

5

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 27 May 2023
Revised: 30 July 2023
Accepted: 01 August 2023
Published: 24 August 2023
© Tsinghua University Press 2023
Return