AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Coordination environments build up and tune a superior synergistic “genome” toward novel trifunctional (TM-NxO4−x)@g-C16N3-H3: High-throughput inspection of ultra-high activity for water splitting and oxygen reduction reactions

Chunyao Fang1Xian Wang1Qiang Zhang1( )Xihang Zhang1Chenglong Shi1Jingcheng Xu2Mengyu Yang1
Department of Physics, University of Shanghai for Science and Technology, Shanghai 200093, China
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
Show Author Information

Graphical Abstract

A novel and stable holey graphitic carbon nitride monolayer g-C16N5 (N4@g-C16N3) can be served as a natural substrate for constructing single-atom catalysts (SACs) ((TM-N4)@g-C16N3, TM = transition metal), among which the (Rh-N4)@g-C16N3-H3 and (Ir-N2O2-Ⅱ)@g-C16N3-H3 achieve trifunctional hydrogen evolution reaction/oxygen reduction reaction/oxygen evolution reaction (HER/ORR/OER) catalysis.

Abstract

Emerging as a prominent area of focus in energy conversion and storage technologies, the development of highly active metal-based single-atom catalysts (SACs) holds great significance in searching alternatives to replace precious metals toward the efficient, stable, and low-cost hydrogen evolution reaction (HER), as well as the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). Combining the tremendous tunability of ligand and coordination environment with rich metal-based electrocatalysts can create breakthrough opportunities for achieving both high stability and activity. Herein, we propose a novel and stable holey graphene-like carbon nitride monolayer g-C16N5 (N4@g-C16N3) stoichiometries interestingly behaving as a natural substrate for constructing SACs ((TM-N4)@g-C16N3), whose evenly distributed holes map rich and uniform nitrogen coordination positions with electron-rich lone pairs for anchoring transition metal (TM) atoms. Then, we employed density functional theory (DFT) calculations to systematically investigate the electrocatalytic activity of (TM-N4)@g-C16N3 toward HER/OER/ORR, meanwhile considering the synergistic modulation of H-loading and O-coordination ((TM-NxO4−x)@g-C16N3-H3, x = 0–4). Together a “four-step procedure” screening mechanism with the first-principles high-throughput calculations, we find that (Rh-N4) and (Ir-N2O2-II) distributed on g-C16N3-H3 can modulate the adsorption strength of the adsorbates, thus achieving the best HER/OER/ORR performance among 216 candidates, and the lowest overpotential of 0.098/0.3/0.46 V and 0.06/0.48/0.45 V, respectively. Additionally, the d-band center, crystal orbital Hamilton population (COHP), and molecular orbitals are used to reveal the OER/ORR activity source. Particularly, the Rh/Ir-d orbital is dramatically hybridized with the O-p orbital of the oxygenated adsorbates, so that the lone-electrons incipiently locate at the antibonding orbital pair up and populate the downward bonding orbital, allowing oxygenated intermediates to be adsorbed onto (TM-NxO4−x)@g-C16N3-H3 appropriately.

Electronic Supplementary Material

Download File(s)
12274_2023_6057_MOESM1_ESM.pdf (27 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

[3]

Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.

[4]

Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

[5]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[6]

Medford, A. J.; Moses, P. G.; Jacobsen, K. W.; Peterson, A. A. A career in catalysis: Jens Kehlet Nørskov. ACS Catal. 2022, 12, 9679–9689.

[7]

Zhang, T.; Wang, H. H.; Zhang, J. T.; Ma, J.; Wang, Z.; Liu, J. H.; Gong, X. Z. Carbon charge population and oxygen molecular transport regulated by program-doping for highly efficient 4e-ORR. Chem. Eng. J. 2022, 444, 136560.

[8]

Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.

[9]

Xie, X.; Zhang, X. D.; Tian, W. Y.; Zhang, X. G.; Ding, J.; Liu, Y. S.; Lu, S. Y. Tri-functional Ru-RuO2/Mn-MoO2 composite: A high efficient electrocatalyst for overall water splitting and rechargeable Zn-air batteries. Chem. Eng. J. 2023, 468, 143760.

[10]

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

[11]

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

[12]

Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603.

[13]

Badruzzaman, A.; Yuda, A.; Ashok, A.; Kumar, A. Recent advances in cobalt based heterogeneous catalysts for oxygen evolution reaction. Inorg. Chim. Acta 2020, 511, 119854.

[14]

Zhang, Y. F.; He, Q. F.; Chen, Z. H.; Chi, Y. Q.; Sun, J. W.; Yuan, D.; Zhang, L. X. Hierarchically porous Co@N-doped carbon fiber assembled by MOF-derived hollow polyhedrons enables effective electronic/mass transport: An advanced 1D oxygen reduction catalyst for Zn-air battery. J. Energy Chem. 2023, 76, 117–126.

[15]

Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014, 8, 5290–5296.

[16]

Wang, X.; Zhang, Q.; Hao, W. J.; Fang, C. Y.; Zhou, J. Y.; Xu, J. C. A novel porous graphitic carbon nitride (g-C7N3) substrate: Prediction of metal-based π-d conjugated nanosheets toward the highly active and selective electrocatalytic nitrogen reduction reaction. J. Mater. Chem. A 2022, 10, 15036–15050.

[17]

Zhang, Q.; Wang, X.; Zhang, F. C.; Fang, C. Y.; Liu, D.; Zhou, Q. J. A high-throughput screening toward efficient nitrogen fixation: Transition metal single-atom catalysts anchored on an emerging π–π conjugated graphitic carbon nitride (g-C10N3) substrate with Dirac dispersion. ACS Appl. Mater. Interfaces 2023, 15, 11812–11826.

[18]

Back, S.; Lim, J.; Kim, N. Y.; Kim, Y. H.; Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 2017, 8, 1090–1096.

[19]

Chen, X.; Zhu, H. Y.; Zhu, J. Q.; Zhang, H. Indium-based bimetallic clusters anchored onto silicon-doped graphene as efficient multifunctional electrocatalysts for ORR, OER, and HER. Chem. Eng. J. 2023, 451, 138998.

[20]

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

[21]

Li, L. L.; Chang, X.; Lin, X. Y.; Zhao, Z. J.; Gong, J. L. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178.

[22]

Chen, M. W.; Luo, M. M.; Liu, C.; Qi, X. P.; Peera, S. G.; Liang, T. X. Transition metal-Nx doped graphene as an efficient oxygen reduction reaction catalyst: A theoretical perspective. Comput. Theor. Chem. 2020, 1187, 112945.

[23]

Wang, Y. R.; Hu, R. M.; Li, Y. C.; Wang, F. H.; Shang, J. X.; Shui, J. L. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Res. 2022, 15, 1054–1060.

[24]

Niu, H.; Wang, X. T.; Shao, C.; Zhang, Z. F.; Guo, Y. Z. Computational screening single-atom catalysts supported on g-CN for N2 reduction: High activity and selectivity. ACS Sustainable Chem. Eng. 2020, 8, 13749–13758.

[25]

Mahmood, J.; Li, F.; Kim, C.; Choi, H. J.; Gwon, O.; Jung, S. M.; Seo, J. M.; Cho, S. J.; Ju, Y. W.; Jeong, H. Y. et al. Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. Nano Energy 2018, 44, 304–310.

[26]

Huang, P. P.; Huang, J. H.; Pantovich, S. A.; Carl, A. D.; Fenton, T. G.; Caputo, C. A.; Grimm, R. L.; Frenkel, A. I.; Li, G. H. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 2018, 140, 16042–16047.

[27]

Wang, X. T.; Niu, H.; Wan, X. H.; Wang, A. Y.; Wang, F. R.; Guo, Y. Z. Impact of coordination environment on single-atom-embedded C3N for oxygen electrocatalysis. ACS Sustainable Chem. Eng. 2022, 10, 7692–7701.

[28]

Zhou, Y. N.; Sheng, L.; Luo, Q. Q.; Zhang, W. H.; Yang, J. L. Improving the activity of electrocatalysts toward the hydrogen evolution reaction, the oxygen evolution reaction, and the oxygen reduction reaction via modification of metal and ligand of conductive two-dimensional metal-organic frameworks. J. Phys. Chem. Lett. 2021, 12, 11652–11658.

[29]

Li, X. Y.; Su, Z. H.; Zhao, Z. F.; Cai, Q. H.; Li, Y. F.; Zhao, J. X. Single Ir atom anchored in pyrrolic-N4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: A computational study. J. Colloid Interface Sci. 2022, 607, 1005–1013.

[30]

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

[31]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[32]

Tan, R.; Li, Z. H.; Zhou, P.; Zou, Z. C.; Li, W. Q.; Sun, L. Z. Dirac semimetals in homogeneous holey carbon nitride monolayers. J. Phys. Chem. C 2021, 125, 6082–6089.

[33]

Creus, J.; Miola, M.; Pescarmona, P. P. Unravelling and overcoming the challenges in the electrocatalytic reduction of fructose to sorbitol. Green Chem. 2023, 25, 1658–1671.

[34]

Lu, X. X.; Tu, W. G.; Zhou, Y.; Zou, Z. G. Effects of electrolyte ionic species on electrocatalytic reactions: Advances, challenges, and perspectives. Adv. Energy Mater. 2023, 13, 2300628.

[35]

Fang, C. Y.; Wang, X.; Zhang, Q.; Zhou, J. Y. First-principles calculations on semiconducting ε-GeS and ε-SnS monolayer nanosheets with photocatalytic activity for sunlight-driven water splitting. ACS Appl. Nano Mater. 2022, 5, 3900–3912.

[36]

Zhou, Y. N.; Chen, L. L.; Sheng, L.; Luo, Q. Q.; Zhang, W. H.; Yang, J. L. Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: A DFT study. Nano Res. 2022, 15, 7994–8000.

[37]

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

[38]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[39]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[40]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[41]

Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985.

[42]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[43]

Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

[44]

Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.

[45]

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.

[46]

Yu, T.; Zhao, Z. Y.; Sun, Y. H.; Bergara, A.; Lin, J. Y.; Zhang, S. T.; Xu, H. Y.; Zhang, L. J.; Yang, G. C.; Liu, Y. C. Two-dimensional PC6 with direct band gap and anisotropic carrier mobility. J. Am. Chem. Soc. 2019, 141, 1599–1605.

[47]

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

[48]

Qin, G. Z.; Yan, Q. B.; Qin, Z. Z.; Yue, S. Y.; Hu, M.; Su, G. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 2015, 17, 4854–4858.

[49]

Politano, A.; Marino, A. R.; Campi, D.; Farías, D.; Miranda, R.; Chiarello, G. Elastic properties of a macroscopic graphene sample from phonon dispersion measurements. Carbon 2012, 50, 4903–4910.

[50]

Casillas, G.; Santiago, U.; Barrón, H.; Alducin, D.; Ponce, A.; José-Yacamán, M. Elasticity of MoS2 sheets by mechanical deformation observed by in situ electron microscopy. J. Phys. Chem. C 2015, 119, 710–715.

[51]

Ataca, C.; Topsakal, M.; Aktürk, E.; Ciraci, S. A comparative study of lattice dynamics of three- and two-dimensional MoS2. J. Phys. Chem. C 2011, 115, 16354–16361.

[52]

Shin, H.; Kang, S.; Koo, J.; Lee, H.; Kim, J.; Kwon, Y. Cohesion energetics of carbon allotropes: Quantum Monte Carlo study. J. Chem. Phys. 2014, 140, 114702.

[53]

Yuan, S.; Peng, J. Y.; Cai, B.; Huang, Z. H.; Garcia-Esparza, A. T.; Sokaras, D.; Zhang, Y. R.; Giordano, L.; Akkiraju, K.; Zhu, Y. G. et al. Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution. Nat. Mater. 2022, 21, 673–680.

[54]

Lu, S.; Huynh, H. L.; Lou, F. L.; Guo, K.; Yu, Z. X. Single transition metal atom embedded antimonene monolayers as efficient trifunctional electrocatalysts for the HER, OER and ORR: A density functional theory study. Nanoscale 2021, 13, 12885–12895.

[55]

Niu, H.; Wang, X. T.; Shao, C.; Liu, Y. S.; Zhang, Z. F.; Guo, Y. Z. Revealing the oxygen reduction reaction activity origin of single atoms supported on g-C3N4 monolayers: A first-principles study. J. Mater. Chem. A 2020, 8, 6555–6563.

[56]

Muthu, J.; Khurshid, F.; Chin, H. T.; Yao, Y. C.; Hsieh, Y. P.; Hofmann, M. The HER performance of 2D materials is underestimated without morphology correction. Chem. Eng. J. 2023, 465, 142852.

[57]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[58]

Yuan, Y.; Ma, J. P.; Ai, H. Q.; Kang, B. T.; Lee, J. Y. A simple general descriptor for rational design of graphyne-based bifunctional electrocatalysts toward hydrogen evolution and oxygen reduction reactions. J. Colloid Interface Sci. 2021, 592, 440–447.

[59]

Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

[60]

Casalongue, H. G. S.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7169–7172.

[61]

Kim, D. Y.; Ha, M.; Kim, K. S. A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. J. Mater. Chem. A 2021, 9, 3511–3519.

Nano Research
Pages 2337-2351
Cite this article:
Fang C, Wang X, Zhang Q, et al. Coordination environments build up and tune a superior synergistic “genome” toward novel trifunctional (TM-NxO4−x)@g-C16N3-H3: High-throughput inspection of ultra-high activity for water splitting and oxygen reduction reactions. Nano Research, 2024, 17(4): 2337-2351. https://doi.org/10.1007/s12274-023-6057-4
Topics:

666

Views

2

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 14 June 2023
Revised: 14 July 2023
Accepted: 01 August 2023
Published: 08 September 2023
© Tsinghua University Press 2023
Return