Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
New generation of lithium-ion batteries (LIBs) integrating solar energy conversion and storage is emerging, as they could solve the fluctuation problem in the utilization of solar energy. Photo-rechargeable lithium-ion batteries (PR-LIBs) are ideal devices for such target, in which solar energy is converted into electricity and stored in LIB. In order to achieve the high performance of PR-LIB, it is crucial to develop dual-function electrode materials that can synergistically capture solar energy and store lithium. Herein, we present photo-rechargeable lithium-ion batteries using defective black TiO2 as photoanode prepared by lithium reduction. The photoanode exhibits excellent photo response in full solar spectrum with a capacity enhancement of 46.4% under illumination, corresponding to the energy conversion efficiency of 4.4% at the current density of 1 A·g−1. When illumination is applied at 20 mA·g−1, the battery capacity increases from ~ 230 in dark to ~ 349 mAh·g−1 at the first cycle, and then stabilizes at 310 mAh·g−1, approaching the theoretical value of 335 mAh·g−1 of TiO2 electrode material. This finding provides thoughts for breaking the capacity limitations in TiO2 and paves the way for powering LIBs by solar illumination.
Zhu, C. B.; Usiskin, R. E.; Yu, Y.; Maier, J. The nanoscale circuitry of battery electrodes. Science 2017, 358, eaao2808.
Zhao, Z. X.; Wu, H. Q. Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods. Nano Res. 2019, 12, 2477–2484.
Jiao, L.; Zhang, X.; Feng, Y. Y.; Lin, J.; Yuan, D. Q.; Wang, Y. B. Coupled solar battery with 6.9% efficiency. Angew. Chem., Int. Ed. 2023, 62, e202306506.
Xu, J. T.; Mahmood, J.; Dou, Y. H.; Dou, S. X.; Li, F.; Dai, L. M.; Baek, J. B. 2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries. Adv. Mater. 2017, 29, 1702007.
O'regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.
Wang, W.; Zhang, X.; Lin, J.; Zhu, L.; Zhou, E. B.; Feng, Y. Y.; Yuan, D. Q.; Wang, Y. B. A photoresponsive battery based on a redox-coupled covalent-organic-framework hybrid photoelectrochemical cathode. Angew. Chem., Int. Ed. 2022, 61, e202214816.
Schmidt, D.; Hager, M. D.; Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 2016, 6, 1500369.
Lee, A.; Vörös, M.; Dose, W. M.; Niklas, J.; Poluektov, O.; Schaller, R. D.; Iddir, H.; Maroni, V. A.; Lee, E.; Ingram, B. et al. Photo-accelerated fast charging of lithium-ion batteries. Nat. Commun. 2019, 10, 4946.
Giordano, F.; Abate, A.; Correa Baena, J. P.; Saliba, M.; Matsui, T.; Im, S. H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Hagfeldt, A.; Graetzel, M. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 2016, 7, 10379.
Nguyen, O.; Courtin, E.; Sauvage, F.; Krins, N.; Sanchez, C.; Laberty-Robert, C. Shedding light on the light-driven lithium ion de-insertion reaction: Towards the design of a photo-rechargeable battery. J. Mater. Chem. A 2017, 5, 5927–5933.
Ahmad, S.; George, C.; Beesley, D. J.; Baumberg, J. J.; De Volder, M. Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 2018, 18, 1856–1862.
Boruah, B. D.; Wen, B.; De Volder, M. Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett. 2021, 21, 3527–3532.
Mo, R. W.; Lei, Z. Y.; Sun, K. N.; Rooney, D. Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater. 2014, 26, 2084–2088.
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.
Wang, H. G.; Wang, G. S.; Yuan, S.; Ma, D. L.; Li, Y.; Zhang, Y. Fe3O4-nanoparticle-decorated TiO2 nanofiber hierarchical heterostructures with improved lithium-ion battery performance over wide temperature range. Nano Res. 2015, 8, 1659–1668.
Wang, J.; Wang, Y.; Zhu, C. F.; Liu, B. Photoinduced rechargeable lithium-ion battery. ACS Appl. Mater. Interfaces 2022, 14, 4071–4078.
Kato, K.; Puthirath, A. B.; Mojibpour, A.; Miroshnikov, M.; Satapathy, S.; Thangavel, N. K.; Mahankali, K.; Dong, L. L.; Arava, L. M. R.; John, G. et al. Light-assisted rechargeable lithium batteries: Organic molecules for simultaneous energy harvesting and storage. Nano Lett. 2021, 21, 907–913.
Salunke, A. D.; Chamola, S.; Mathieson, A.; Boruah, B. D.; De Volder, M.; Ahmad, S. Photo-rechargeable Li-ion batteries: Device configurations, mechanisms, and materials. ACS Appl. Energy Mater. 2022, 5, 7891–7912.
Hodes, G.; Manassen, J.; Cahen, D. Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature 1976, 261, 403–404.
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV−visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.
Lee, D. H.; Lee, B. H.; Sinha, A. K.; Park, J. H.; Kim, M. S.; Park, J.; Shin, H.; Lee, K. S.; Sung, Y. E.; Hyeon, T. Engineering titanium dioxide nanostructures for enhanced lithium-ion storage. J. Am. Chem. Soc. 2018, 140, 16676–16684.
Xu, C.; Zhang, X.; Duan, L. F.; Zhang, X. Y.; Li, X. S.; Lü, W. A photo-assisted rechargeable battery: Synergy, compatibility, and stability of a TiO2/dye/Cu2S bifunctional composite electrode. Nanoscale. 2020, 12, 530–537.
Hu, C.; Chen, L.; Hu, Y. J.; Chen, A. P.; Chen, L.; Jiang, H.; Li, C. Z. Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv. Mater. 2021, 33, 2103558.
Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.
Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.
Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.
Zuo, F.; Wang, L.; Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 2010, 132, 11856–11857.
Tan, Y. X.; Zhang, X.; Lin, J.; Wang, Y. B. A perspective on photoelectrochemical storage materials for coupled solar batteries. Energy Environ. Sci. 2023, 16, 2432–2447.
Zhang, Y. J.; Xu, Z. F.; Li, G. Y.; Huang, X. J.; Hao, W. C.; Bi, Y. P. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting. Angew. Chem., Int. Ed. 2019, 58, 14229–14233.
Chen, J.; Song, W. X.; Hou, H. S.; Zhang, Y.; Jing, M. J.; Jia, X. N.; Ji, X. B. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-Ion batteries. Adv. Funct. Mater. 2015, 25, 6793–6801.
Kumar, S.; Gautam, S.; Kim, G. W.; Ahmed, F.; Anwar, M. S.; Chae, K. H.; Choi, H. K.; Chung, H.; Koo, B. H. Structural, magnetic and electronic structure studies of Mn doped TiO2 thin films. Appl. Surf. Sci. 2011, 257, 10557–10561.
Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 2006, 18, 1421–1426.
Yu, X. Y.; Wu, H. B.; Yu, L.; Ma, F. X.; Lou, X. W. Rutile TiO2 submicroboxes with superior lithium storage properties. Angew. Chem., Int. Ed. 2015, 54, 4001–4004.
Marinaro, M.; Pfanzelt, M.; Kubiak, P.; Marassi, R.; Wohlfahrt-Mehrens, M. Low temperature behaviour of TiO2 rutile as negative electrode material for lithium-ion batteries. J. Power Sources. 2011, 196, 9825–9829.
Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S. H. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 2009, 131, 1802–1809.
Ling, T.; Da, P. F.; Zheng, X. L.; Ge, B. H.; Hu, Z. P.; Wu, M. Y.; Du, X. W.; Hu, W. B.; Jaroniec, M.; Qiao, S. Z. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 2018, 4, eaau6261.
Zhang, W.; Seo, D. H.; Chen, T. N.; Wu, L. J.; Topsakal, M.; Zhu, Y. M.; Lu, D. Y.; Ceder, G.; Wang, F. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 2020, 367, 1030–1034.