AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Approaching the theoretical capacity of TiO2 anode in a photo-rechargeable lithium-ion battery

Wen YanJie WangQing HuJingjing FuMohamed K. AlbolkanyTian ZhangXiao LuFei YeBo Liu( )
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

We present photo-rechargeable lithium-ion batteries (PR-LIBs) using defective black TiO2 as photoanode prepared by lithium reduction. This PR-LIB can approach the theoretical capacity of TiO2 by photo-assistant charging.

Abstract

New generation of lithium-ion batteries (LIBs) integrating solar energy conversion and storage is emerging, as they could solve the fluctuation problem in the utilization of solar energy. Photo-rechargeable lithium-ion batteries (PR-LIBs) are ideal devices for such target, in which solar energy is converted into electricity and stored in LIB. In order to achieve the high performance of PR-LIB, it is crucial to develop dual-function electrode materials that can synergistically capture solar energy and store lithium. Herein, we present photo-rechargeable lithium-ion batteries using defective black TiO2 as photoanode prepared by lithium reduction. The photoanode exhibits excellent photo response in full solar spectrum with a capacity enhancement of 46.4% under illumination, corresponding to the energy conversion efficiency of 4.4% at the current density of 1 A·g−1. When illumination is applied at 20 mA·g−1, the battery capacity increases from ~ 230 in dark to ~ 349 mAh·g−1 at the first cycle, and then stabilizes at 310 mAh·g−1, approaching the theoretical value of 335 mAh·g−1 of TiO2 electrode material. This finding provides thoughts for breaking the capacity limitations in TiO2 and paves the way for powering LIBs by solar illumination.

Electronic Supplementary Material

Download File(s)
12274_2023_6062_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Zhu, C. B.; Usiskin, R. E.; Yu, Y.; Maier, J. The nanoscale circuitry of battery electrodes. Science 2017, 358, eaao2808.

[2]

Zhao, Z. X.; Wu, H. Q. Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods. Nano Res. 2019, 12, 2477–2484.

[3]

Jiao, L.; Zhang, X.; Feng, Y. Y.; Lin, J.; Yuan, D. Q.; Wang, Y. B. Coupled solar battery with 6.9% efficiency. Angew. Chem., Int. Ed. 2023, 62, e202306506.

[4]

Xu, J. T.; Mahmood, J.; Dou, Y. H.; Dou, S. X.; Li, F.; Dai, L. M.; Baek, J. B. 2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries. Adv. Mater. 2017, 29, 1702007.

[5]

O'regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

[6]

Wang, W.; Zhang, X.; Lin, J.; Zhu, L.; Zhou, E. B.; Feng, Y. Y.; Yuan, D. Q.; Wang, Y. B. A photoresponsive battery based on a redox-coupled covalent-organic-framework hybrid photoelectrochemical cathode. Angew. Chem., Int. Ed. 2022, 61, e202214816.

[7]

Schmidt, D.; Hager, M. D.; Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 2016, 6, 1500369.

[8]

Lee, A.; Vörös, M.; Dose, W. M.; Niklas, J.; Poluektov, O.; Schaller, R. D.; Iddir, H.; Maroni, V. A.; Lee, E.; Ingram, B. et al. Photo-accelerated fast charging of lithium-ion batteries. Nat. Commun. 2019, 10, 4946.

[9]

Giordano, F.; Abate, A.; Correa Baena, J. P.; Saliba, M.; Matsui, T.; Im, S. H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Hagfeldt, A.; Graetzel, M. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 2016, 7, 10379.

[10]

Nguyen, O.; Courtin, E.; Sauvage, F.; Krins, N.; Sanchez, C.; Laberty-Robert, C. Shedding light on the light-driven lithium ion de-insertion reaction: Towards the design of a photo-rechargeable battery. J. Mater. Chem. A 2017, 5, 5927–5933.

[11]

Ahmad, S.; George, C.; Beesley, D. J.; Baumberg, J. J.; De Volder, M. Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 2018, 18, 1856–1862.

[12]

Boruah, B. D.; Wen, B.; De Volder, M. Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett. 2021, 21, 3527–3532.

[13]

Mo, R. W.; Lei, Z. Y.; Sun, K. N.; Rooney, D. Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater. 2014, 26, 2084–2088.

[14]

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

[15]

Wang, H. G.; Wang, G. S.; Yuan, S.; Ma, D. L.; Li, Y.; Zhang, Y. Fe3O4-nanoparticle-decorated TiO2 nanofiber hierarchical heterostructures with improved lithium-ion battery performance over wide temperature range. Nano Res. 2015, 8, 1659–1668.

[16]

Wang, J.; Wang, Y.; Zhu, C. F.; Liu, B. Photoinduced rechargeable lithium-ion battery. ACS Appl. Mater. Interfaces 2022, 14, 4071–4078.

[17]

Kato, K.; Puthirath, A. B.; Mojibpour, A.; Miroshnikov, M.; Satapathy, S.; Thangavel, N. K.; Mahankali, K.; Dong, L. L.; Arava, L. M. R.; John, G. et al. Light-assisted rechargeable lithium batteries: Organic molecules for simultaneous energy harvesting and storage. Nano Lett. 2021, 21, 907–913.

[18]

Salunke, A. D.; Chamola, S.; Mathieson, A.; Boruah, B. D.; De Volder, M.; Ahmad, S. Photo-rechargeable Li-ion batteries: Device configurations, mechanisms, and materials. ACS Appl. Energy Mater. 2022, 5, 7891–7912.

[19]

Hodes, G.; Manassen, J.; Cahen, D. Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature 1976, 261, 403–404.

[20]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[21]

Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV−visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.

[22]

Lee, D. H.; Lee, B. H.; Sinha, A. K.; Park, J. H.; Kim, M. S.; Park, J.; Shin, H.; Lee, K. S.; Sung, Y. E.; Hyeon, T. Engineering titanium dioxide nanostructures for enhanced lithium-ion storage. J. Am. Chem. Soc. 2018, 140, 16676–16684.

[23]

Xu, C.; Zhang, X.; Duan, L. F.; Zhang, X. Y.; Li, X. S.; Lü, W. A photo-assisted rechargeable battery: Synergy, compatibility, and stability of a TiO2/dye/Cu2S bifunctional composite electrode. Nanoscale. 2020, 12, 530–537.

[24]

Hu, C.; Chen, L.; Hu, Y. J.; Chen, A. P.; Chen, L.; Jiang, H.; Li, C. Z. Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv. Mater. 2021, 33, 2103558.

[25]

Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.

[26]

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

[27]

Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.

[28]

Zuo, F.; Wang, L.; Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 2010, 132, 11856–11857.

[29]

Tan, Y. X.; Zhang, X.; Lin, J.; Wang, Y. B. A perspective on photoelectrochemical storage materials for coupled solar batteries. Energy Environ. Sci. 2023, 16, 2432–2447.

[30]

Zhang, Y. J.; Xu, Z. F.; Li, G. Y.; Huang, X. J.; Hao, W. C.; Bi, Y. P. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting. Angew. Chem., Int. Ed. 2019, 58, 14229–14233.

[31]

Chen, J.; Song, W. X.; Hou, H. S.; Zhang, Y.; Jing, M. J.; Jia, X. N.; Ji, X. B. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-Ion batteries. Adv. Funct. Mater. 2015, 25, 6793–6801.

[32]

Kumar, S.; Gautam, S.; Kim, G. W.; Ahmed, F.; Anwar, M. S.; Chae, K. H.; Choi, H. K.; Chung, H.; Koo, B. H. Structural, magnetic and electronic structure studies of Mn doped TiO2 thin films. Appl. Surf. Sci. 2011, 257, 10557–10561.

[33]

Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 2006, 18, 1421–1426.

[34]

Yu, X. Y.; Wu, H. B.; Yu, L.; Ma, F. X.; Lou, X. W. Rutile TiO2 submicroboxes with superior lithium storage properties. Angew. Chem., Int. Ed. 2015, 54, 4001–4004.

[35]

Marinaro, M.; Pfanzelt, M.; Kubiak, P.; Marassi, R.; Wohlfahrt-Mehrens, M. Low temperature behaviour of TiO2 rutile as negative electrode material for lithium-ion batteries. J. Power Sources. 2011, 196, 9825–9829.

[36]

Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S. H. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 2009, 131, 1802–1809.

[37]

Ling, T.; Da, P. F.; Zheng, X. L.; Ge, B. H.; Hu, Z. P.; Wu, M. Y.; Du, X. W.; Hu, W. B.; Jaroniec, M.; Qiao, S. Z. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 2018, 4, eaau6261.

[38]

Zhang, W.; Seo, D. H.; Chen, T. N.; Wu, L. J.; Topsakal, M.; Zhu, Y. M.; Lu, D. Y.; Ceder, G.; Wang, F. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 2020, 367, 1030–1034.

Nano Research
Pages 2655-2662
Cite this article:
Yan W, Wang J, Hu Q, et al. Approaching the theoretical capacity of TiO2 anode in a photo-rechargeable lithium-ion battery. Nano Research, 2024, 17(4): 2655-2662. https://doi.org/10.1007/s12274-023-6062-7
Topics:

808

Views

9

Crossref

9

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 28 June 2023
Revised: 21 July 2023
Accepted: 01 August 2023
Published: 11 September 2023
© Tsinghua University Press 2023
Return