AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Self-healable gels in electrochemical energy storage devices

Yang Li1,2,§( )PeiPei Ding3,§Yuzhe Gu1Sheng Qian2Yuncong Pang2Lele Wang1Jiayang Feng1Baoguang Liu1Qi Wan4Ping Li4Zhiwei Liu5,6( )
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

§ Yang Li and PeiPei Ding contributed equally to this work.

Show Author Information

Graphical Abstract

The utilization of self-healable gels is proven as an effective method to realize long-term stable operation of electrochemical energy storage devices. This review summarizes the feature and fabrication of different gels, discusses the healing mechanisms of self-healable gels, and introduces the electrochemical energy storage devices of electrodes, binders, and electrolytes.

Abstract

In the green energy and carbon-neutral technology, electrochemical energy storage devices have received continuously increasing attention recently. However, due to the unavoidable volume expansion/shrinkage of key materials or irreversible mechanical damages during application, the stability of energy storage and delivery as well as the lifetime of these devices are severely shortened, leading to serious performance degradation or even safety issues. Therefore, the utilization of self-healable gels into electrochemical energy storage devices, such as electrodes, binders, and electrolytes, is proven as an effective method to realize long-term stable operation of these devices via the self-repairing of mechanical and electrochemical characteristics. Herein, this review first summarizes the feature and fabrication of different gels, paying special attention to hydrogels, organohydrogels, and ionogels. Then, basic concepts and figure of merit of self-healable gels are analyzed with a detailed discussion at the healing mechanisms, from reversible dynamic bonds to physical molecular diffusion, and to external healing trigger. Then we introduce all the important parts of electrochemical energy storage devices, which could be replaced by healable gels to enhance the durability, including electrodes, binders, and electrolytes. Finally, the critical challenges and future perspectives regarding the future development of healable gels based high-performance electrochemical energy storage devices or electronics are provided.

References

[1]

Lee, M. J.; Han, J.; Lee, K.; Lee, Y. J.; Kim, B. G.; Jung, K. N.; Kim, B. J.; Lee, S. W. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022, 601, 217–222.

[2]

Han, D. L.; Cui, C. J.; Zhang, K. Y.; Wang, Z. X.; Gao, J. C.; Guo, Y.; Zhang, Z. C.; Wu, S. C.; Yin, L. C.; Weng, Z. et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 2022, 5, 205–213.

[3]

Ren, Y. M.; Yu, C. B.; Chen, Z. H.; Xu, Y. X. Two-dimensional polymer nanosheets for efficient energy storage and conversion. Nano Res. 2021, 14, 2023–2036.

[4]

Hua, M. T.; Wu, S. W.; Jin, Y.; Zhao, Y. S.; Yao, B. W.; He, X. M. Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv. Mater. 2021, 33, 2100983.

[5]

Yao, H. R.; Zheng, L. T.; Xin, S.; Guo, Y. G. Air-stability of sodium-based layered-oxide cathode materials. Sci. China Chem. 2022, 65, 1076–1087.

[6]

Chi, X. W.; Zhang, Y.; Hao, F.; Kmiec, S.; Dong, H.; Xu, R.; Zhao, K. J.; Ai, Q.; Terlier, T.; Wang, L. et al. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries. Nat. Commun. 2022, 13, 2854.

[7]

Sun, F. Y.; Li, Z. X.; Gao, S. L.; He, Y. Y.; Luo, J. C.; Zhao, X.; Yang, D. D.; Gao, T.; Yang, H. B.; Cao, P. F. Self-healable, highly stretchable, ionic conducting polymers as efficient protecting layers for stable lithium-metal electrodes. ACS Appl. Mater. Interfaces 2022, 14, 26014–26023.

[8]

Liu, X. J.; Xu, Z. X.; Iqbal, A.; Chen, M.; Ali, N.; Low, C.; Qi, R. R.; Zai, J. T.; Qian, X. F. Chemical coupled PEDOT:PSS/Si electrode: Suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 2021, 13, 54.

[9]

Hu, L. L.; Jin, M. H.; Zhang, Z.; Chen, H. X.; Boorboor Ajdari, F.; Song, J. X. Interface-adaptive binder enabled by supramolecular interactions for high-capacity Si/C composite anodes in lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2111560.

[10]

Zhang, Y. Y.; Yi, L. L.; Zhang, J. P.; Wang, X.; Hu, X. C.; Wei, W.; Wang, H. Advances in flexible lithium metal batteries. Sci. China Mater. 2022, 65, 2035–2059.

[11]

Xiao, X.; Zheng, Z. Y.; Zhong, X. W.; Gao, R. H.; Piao, Z. H.; Jiao, M. L.; Zhou, G. M. Rational design of flexible Zn-based batteries for wearable electronic devices. ACS Nano 2023, 17, 1764–1802.

[12]

Li, X. L.; Lou, D. Y.; Wang, H. Y.; Sun, X. Y.; Li, J.; Liu, Y. N. Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property. Adv. Funct. Mater. 2020, 30, 2007291.

[13]

Li, C. W.; Hou, J. C.; Zhang, J. Y.; Li, X. Y.; Jiang, S. Q.; Zhang, G. Q.; Yao, Z. J.; Liu, T. C.; Shen, S. H.; Liu, Z. Q. et al. Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Sci. China Chem. 2022, 65, 1420–1432.

[14]

Wang, H.; Wang, P. P.; Feng, Y. P.; Liu, J.; Wang, J. Q.; Hu, M. M.; Wei, J.; Huang, Y. Recent advances on self-healing materials and batteries. ChemElectroChem 2019, 6, 1605–1622.

[15]

Xia, H. R.; Lv, Z. S.; Zhang, W.; Wei, J. Q.; Liu, L.; Cao, S. K.; Zhu, Z. Q.; Tang, Y. X.; Chen, X. D. Hygroscopic chemistry enables fire-tolerant supercapacitors with a self-healable “solute-in-air” electrolyte. Adv. Mater. 2022, 34, 2109857.

[16]

Li, H. J.; Gao, G. R.; Xu, Z. Y.; Tang, D. N.; Chen, T. Recent progress in bionic skin based on conductive polymer gels. Macromol. Rapid Commun. 2021, 42, 2100480.

[17]

Zhao, Y. F.; Fu, X. F.; Liu, B. H.; Sun, J. T.; Zhuang, Z. H.; Yang, P. H.; Zhong, J. W.; Liu, K. Ultra-stretchable hydrogel thermocouples for intelligent wearables. Sci. China Mater. 2023, 66, 1934–1940.

[18]

Dechiraju, H.; Jia, M. P.; Luo, L.; Rolandi, M. Ion-conducting hydrogels and their applications in bioelectronics. Adv. Sustain. Syst. 2022, 6, 2100173.

[19]

Hsieh, J. C.; Alawieh, H.; Li, Y.; Iwane, F.; Zhao, L. R.; Anderson, R.; Abdullah, S. I.; Kevin Tang, K. W.; Wang, W. L.; Pyatnitskiy, I. et al. A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface. Biosens. Bioelectron. 2022, 218, 114756.

[20]

Dai, J.; Qin, H. L.; Dong, W. X.; Cong, H. P.; Yu, S. H. Autonomous self-healing of highly stretchable supercapacitors at all climates. Nano Lett. 2022, 22, 6444–6453.

[21]

Yang, P. H.; Yang, J. L.; Liu, K.; Fan, H. J. Hydrogels enable future smart batteries. ACS Nano 2022, 16, 15528–15536.

[22]

Bai, S. Y.; Kim, B.; Kim, C.; Tamwattana, O.; Park, H.; Kim, J.; Lee, D.; Kang, K. Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 2021, 16, 77–84.

[23]

Yan, W.; Wei, J.; Chen, T.; Duan, L.; Wang, L.; Xue, X. L.; Chen, R. P.; Kong, W. H.; Lin, H. N.; Li, C. H. et al. Superstretchable, thermostable and ultrahigh-loading lithium-sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 2021, 80, 105510.

[24]

Lee, D.; Kim, H. I.; Kim, W. Y.; Cho, S. K.; Baek, K.; Jeong, K.; Ahn, D. B.; Park, S.; Kang, S. J.; Lee, S. Y. Water-repellent ionic liquid skinny gels customized for aqueous Zn-ion battery anodes. Adv. Funct. Mater. 2021, 31, 2103850.

[25]

Ma, W. T.; Wan, S.; Cui, X. R.; Hou, G. L.; Xiao, Y.; Rong, J. F.; Chen, S. M. Exploration and application of self-healing strategies in lithium batteries. Adv. Funct. Mater. 2023, 33, 2212821.

[26]

Ge, J.; Zhu, M. S.; Eisner, E.; Yin, Y.; Dong, H. Y.; Karnaushenko, D. D.; Karnaushenko, D.; Zhu, F.; Ma, L. B.; Schmidt, O. G. Imperceptible supercapacitors with high area-specific capacitance. Small 2021, 17, 2101704.

[27]

Niu, J. P.; Chen, Z.; Zhao, J. W.; Cui, G. L. Stimulus-responsive polymers for safe batteries and smart electronics. Sci. China Mater. 2022, 65, 2060–2071.

[28]

Zhao, C. Z.; Duan, H.; Huang, J. Q.; Zhang, J.; Zhang, Q.; Guo, Y. G.; Wan, L. J. Designing solid-state interfaces on lithium-metal anodes: A review. Sci. China Chem. 2019, 62, 1286–1299.

[29]

Ma, C.; Cui, W. F.; Liu, X. Z.; Ding, Y.; Wang, Y. G. In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InfoMat 2022, 4, e12232.

[30]

Davino, S.; Callegari, D.; Pasini, D.; Thomas, M.; Nicotera, I.; Bonizzoni, S.; Mustarelli, P.; Quartarone, E. Cross-linked gel electrolytes with self-healing functionalities for smart lithium batteries. ACS Appl. Mater. Interfaces 2022, 14, 51941–51953.

[31]

Zhou, X.; Zhao, X. H.; Wang, Y. Y.; Wang, P. Y.; Jiang, X. Y.; Song, Z. H.; Ding, J. J.; Liu, G. J.; Li, X.; Sun, W. Z. et al. Gel-based strain/pressure sensors for underwater sensing: Sensing mechanisms, design strategies and applications. Compos. Part B: Eng. 2023, 255, 110631.

[32]

Yu, C. J.; Yue, Z. W.; Zhang, H.; Shi, M. Y.; Yao, M. M.; Yu, Q. Y.; Liu, M.; Guo, B. Y.; Zhang, H. T.; Tian, L. Q. et al. Ultra-histocompatible and electrophysiological-adapted PEDOT-based hydrogels designed for cardiac repair. Adv. Funct. Mater. 2023, 33, 2211023.

[33]

Zhang, M. W.; Yu, R.; Tao, X. L.; He, Y. Y.; Li, X. P.; Tian, F.; Chen, X. Y.; Huang, W. Mechanically robust and highly conductive ionogels for soft ionotronics. Adv. Funct. Mater. 2023, 33, 2208083.

[34]

Xu, M. D.; Hua, L. Q.; Gong, L. H.; Lu, J. L.; Wang, J. H.; Zhao, C. Z. Lighted up by hydrogen-bonding: Luminescence behavior and applications of AIEgen-doped interpenetrating network hydrogel. Sci. China Chem. 2021, 64, 1770–1777.

[35]

Lou, J. Z.; Mooney, D. J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 2022, 6, 726–744.

[36]

Yang, Y.; Sun, H.; Zhang, B.; Hu, L. L.; Xu, L.; Hao, J. C. Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anti-corrosion. Nano Res. 2023, 16, 1533–1544.

[37]

Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.

[38]

Yuk, H.; Wu, J. J.; Zhao, X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935–952.

[39]

Chen, Y.; Li, J.; Lu, J. W.; Ding, M.; Chen, Y. Synthesis and properties of poly(vinyl alcohol) hydrogels with high strength and toughness. Polym. Test. 2022, 108, 107516.

[40]

Miao, Z. Y.; Song, Y.; Dong, Y. J.; Ge, D.; Shui, J. X.; He, X.; Yu, H. Y. Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors. Nano Res. 2023, 16, 3156–3167.

[41]

Lu, B. L.; Lin, F. C.; Jiang, X.; Cheng, J. J.; Lu, Q. L.; Song, J. B.; Chen, C.; Huang, B. One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties. ACS Sustain. Chem. Eng. 2017, 5, 948–956.

[42]

Yuk, H.; Varela, C. E.; Nabzdyk, C. S.; Mao, X. Y.; Padera, R. F.; Roche, E. T.; Zhao, X. H. Dry double-sided tape for adhesion of wet tissues and devices. Nature 2019, 575, 169–174.

[43]

Chen, G. Q.; Hu, O. D.; Lu, J.; Gu, J. F.; Chen, K.; Huang, J. R.; Hou, L. X.; Jiang, X. C. Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor. Chem. Eng. J. 2021, 425, 131505.

[44]

Sui, X. J.; Guo, H. S.; Cai, C. C.; Li, Q. S.; Wen, C. Y.; Zhang, X. Y.; Wang, X. D.; Yang, J.; Zhang, L. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem. Eng. J. 2021, 419, 129478.

[45]

Yang, C. H.; Yin, T. H.; Suo, Z. G. Polyacrylamide hydrogels. I. Network imperfection. J. Mech. Phys. Solids 2019, 131, 43–55.

[46]

Xu, S. J.; Sun, Z. H.; Sun, C. G.; Li, F.; Chen, K.; Zhang, Z. H.; Hou, G. J.; Cheng, H. M.; Li, F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 2020, 30, 2007172.

[47]

Li, W. Y.; Pang, Y.; Liu, J. Y.; Liu, G. H.; Wang, Y. G.; Xia, Y. Y. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 2017, 7, 23494–23501.

[48]

Hu, L. X.; Chee, P. L.; Sugiarto, S.; Yu, Y.; Shi, C. Q.; Yan, R.; Yao, Z. Q.; Shi, X. W.; Zhi, J. C.; Kai, D. et al. Hydrogel-based flexible electronics. Adv. Mater. 2023, 35, 2205326.

[49]

Li, G.; Li, C. L.; Li, G. D.; Yu, D. H.; Song, Z. P.; Wang, H. L.; Liu, X. N.; Liu, H.; Liu, W. X. Development of conductive hydrogels for fabricating flexible strain sensors. Small 2022, 18, 2101518.

[50]

Li, J. Y.; Ding, Q. L.; Wang, H.; Wu, Z. X.; Gui, X. C.; Li, C. W.; Hu, N.; Tao, K.; Wu, J. Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 2023, 15, 105.

[51]

Zhao, W.; Gan, D. L.; Qu, X. Y.; Liu, J. Y.; Liu, Y. L.; Wang, Q.; Wang, W. J.; Sun, C. C.; Dong, X. C. Bioinspired wet-resistant organogel for highly sensitive mechanical perception. Sci. China Mater. 2022, 65, 2262–2273.

[52]

Ding, Q. L.; Wu, Z. X.; Tao, K.; Wei, Y. M.; Wang, W. Y.; Yang, B. R.; Xie, X.; Wu, J. Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater. Horiz. 2022, 9, 1356–1386.

[53]

Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

[54]

Cheng, Y. P.; Zang, J. J.; Zhao, X.; Wang, H.; Hu, Y. C. Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors. Carbohydr. Polym. 2022, 277, 118872.

[55]

Chen, F.; Zhou, D.; Wang, J. H.; Li, T. Z.; Zhou, X. H.; Gan, T. S.; Handschuh-Wang, S.; Zhou, X. C. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew. Chem., Int. Ed. 2018, 57, 6568–6571.

[56]

Luo, J. B.; Xing, Y. Z.; Sun, C. Y.; Fan, L. Q.; Shi, H. B.; Zhang, Q. H.; Li, Y. G.; Hou, C. Y.; Wang, H. Z. A bio-adhesive ion-conducting organohydrogel as a high-performance non-invasive interface for bioelectronics. Chem. Eng. J. 2022, 427, 130886.

[57]

Gao, H. N.; Zhao, Z. G.; Cai, Y. D.; Zhou, J. J.; Hua, W. D.; Chen, L.; Wang, L.; Zhang, J. Q.; Han, D.; Liu, M. J. et al. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat. Commun. 2017, 8, 15911.

[58]

Wu, J.; Wu, Z. X.; Lu, X.; Han, S. J.; Yang, B. R.; Gui, X. C.; Tao, K.; Miao, J. M.; Liu, C. Ultrastretchable and stable strain sensors based on antifreezing and self-healing ionic organohydrogels for human motion monitoring. ACS Appl. Mater. Interfaces 2019, 11, 9405–9414.

[59]

Liang, Y. N.; Wu, Z. X.; Wei, Y. M.; Ding, Q. L.; Zilberman, M.; Tao, K.; Xie, X.; Wu, J. Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 2022, 14, 52.

[60]

Fang, L. Y.; Zhang, J. C.; Wang, W. J.; Zhang, Y. L.; Chen, F.; Zhou, J. H.; Chen, F. B.; Li, R.; Zhou, X. C.; Xie, Z. Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes. ACS Appl. Mater. Interfaces 2020, 12, 56393–56402.

[61]

Zhang, L.; Jiang, D. W.; Dong, T. H.; Das, R.; Pan, D.; Sun, C. Y.; Wu, Z. J.; Zhang, Q. B.; Liu, C. T.; Guo, Z. H. Overview of ionogels in flexible electronics. Chem. Record 2020, 20, 948–967.

[62]

Luo, Z. H.; Li, W. J.; Yan, J. P.; Sun, J. Roles of ionic liquids in adjusting nature of ionogels: A mini review. Adv. Funct. Mater. 2022, 32, 2203988.

[63]

Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J. X.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2022, 15, 2060–2068.

[64]

Zhao, G. R.; Lv, B.; Wang, H. G.; Yang, B. P.; Li, Z. Y.; Ren, J. F.; Gui, G.; Liu, W. G.; Yang, S. R.; Li, L. L. Ionogel-based flexible stress and strain sensors. Int. J. Smart Nano Mater. 2021, 12, 307–336.

[65]

Wang, Y. F.; Liu, Y.; Hu, N.; Shi, P. R.; Zhang, C.; Liu, T. X. Highly stretchable and self-healable ionogels with multiple sensitivity towards compression, strain and moisture for skin-inspired ionic sensors. Sci. China Mater. 2022, 65, 2252–2261.

[66]

Poh, W. C.; Eh, A. L. S.; Wu, W. T.; Guo, X. Y.; Lee, P. S. Rapidly photocurable solid-state poly(ionic liquid) ionogels for thermally robust and flexible electrochromic devices. Adv. Mater. 2022, 34, 2206952.

[67]

Wang, Z. H.; Zhang, J. X.; Liu, J. H.; Hao, S.; Song, H. Z.; Zhang, J. 3D printable, highly stretchable, superior stable ionogels based on poly(ionic liquid) with hyperbranched polymers as macro-cross-linkers for high-performance strain sensors. ACS Appl. Mater. Interfaces 2021, 13, 5614–5624.

[68]

Hao, S.; Li, T. C.; Yang, X. M.; Song, H. Z. Ultrastretchable, adhesive, fast self-healable, and three-dimensional printable photoluminescent ionic skin based on hybrid network ionogels. ACS Appl. Mater. Interfaces 2022, 14, 2029–2037.

[69]

Xiang, S. F.; Chen, S. S.; Yao, M. T.; Zheng, F.; Lu, Q. H. Strain sensor based on a flexible polyimide ionogel for application in high- and low-temperature environments. J. Mater. Chem. C 2019, 7, 9625–9632.

[70]

Ren, Y. Y.; Guo, J. N.; Liu, Z. Y.; Sun, Z.; Wu, Y. Q.; Liu, L. L.; Yan, F. Ionic liquid-based click-ionogels. Sci. Adv. 2019, 5, eaax0648.

[71]

Yu, R.; Li, Z. L.; Pan, G. Y.; Guo, B. L. Antibacterial conductive self-healable supramolecular hydrogel dressing for infected motional wound healing. Sci. China Chem. 2022, 65, 2238–2251.

[72]

Grosjean, M.; Gangolphe, L.; Nottelet, B. Degradable self-healable networks for use in biomedical applications. Adv. Funct. Mater. 2023, 33, 2205315.

[73]

Kong, B.; Liu, R.; Cheng, Y.; Cai, X. D.; Liu, J. Y.; Zhang, D. G.; Tan, H.; Zhao, Y. J. Natural biopolymers derived hydrogels with injectable, self-healing, and tissue adhesive abilities for wound healing. Nano Res. 2023, 16, 2798–2807.

[74]

Tan, Y. J.; Wu, J. K.; Li, H. Y.; Tee, B. C. K. Self-healing electronic materials for a smart and sustainable future. ACS Appl. Mater. Interfaces 2018, 10, 15331–15345.

[75]

Mezzomo, L.; Ferrara, C.; Brugnetti, G.; Callegari, D.; Quartarone, E.; Mustarelli, P.; Ruffo, R. Exploiting self-healing in lithium batteries: Strategies for next-generation energy storage devices. Adv. Energy Mater. 2020, 10, 2002815.

[76]

Khatib, M.; Zohar, O.; Haick, H. Self-healing soft sensors: From material design to implementation. Adv. Mater. 2021, 33, 2004190.

[77]

Chang, T.; Panhwar, F.; Zhao, G. Flourishing self-healing surface materials: Recent progresses and challenges. Adv. Mater. Interfaces 2020, 7, 1901959.

[78]

Gai, Y. S.; Li, H.; Li, Z. Self-healing functional electronic devices. Small 2021, 17, 2101383.

[79]

Wu, Z. X.; Yang, X.; Wu, J. Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 2021, 13, 2128–2144.

[80]

Hui, Y.; Wen, Z. B.; Pilate, F.; Xie, H.; Fan, C. J.; Du, L.; Liu, D.; Yang, K. K.; Wang, Y. Z. A facile strategy to fabricate highly-stretchable self-healing poly(vinyl alcohol) hybrid hydrogels based on metal-ligand interactions and hydrogen bonding. Polym. Chem. 2016, 7, 7269–7277.

[81]

Deng, Z. X.; Wang, H.; Ma, P. X.; Guo, B. L. Self-healing conductive hydrogels: Preparation, properties and applications. Nanoscale 2020, 12, 1224–1246.

[82]

Xu, Y.; Cui, M. Y.; Patsis, P. A.; Günther, M.; Yang, X. G.; Eckert, K.; Zhang, Y. X. Reversibly assembled electroconductive hydrogel via a host–guest interaction for 3D cell culture. ACS Appl. Mater. Interfaces 2019, 11, 7715–7724.

[83]

Chen, J. S.; Liu, J. F.; Thundat, T.; Zeng, H. B. Polypyrrole-doped conductive supramolecular elastomer with stretchability, rapid self-healing, and adhesive property for flexible electronic sensors. ACS Appl. Mater. Interfaces 2019, 11, 18720–18729.

[84]

Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y. Q.; Chang, Q.; Jiang, J. Z.; Cai, J.; Wang, Q.; Luo, G. X.; Xing, M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 2017, 29, 1700533.

[85]

Talebian, S.; Mehrali, M.; Taebnia, N.; Pennisi, C. P.; Kadumudi, F. B.; Foroughi, J.; Hasany, M.; Nikkhah, M.; Akbari, M.; Orive, G. et al. Self-healing hydrogels: The next paradigm shift in tissue engineering. Adv. Sci. 2019, 6, 1801664.

[86]

Xu, Y.; Patsis, P. A.; Hauser, S.; Voigt, D.; Rothe, R.; Günther, M.; Cui, M. Y.; Yang, X. G.; Wieduwild, R.; Eckert, K. et al. Cytocompatible, injectable, and electroconductive soft adhesives with hybrid covalent/noncovalent dynamic network. Adv. Sci. 2019, 6, 1802077.

[87]

Peng, Y.; Gu, S. Y.; Wu, Q.; Xie, Z. T.; Wu, J. R. High-performance self-healing polymers. Acc. Mater. Res. 2023, 4, 323–333.

[88]

Zhou, Y.; Li, L.; Han, Z. B.; Li, Q.; He, J. L.; Wang, Q. Self-healing polymers for electronics and energy devices. Chem. Rev. 2023, 123, 558–612.

[89]

Wang, S. Y.; Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583.

[90]

Kang, J.; Tok, J. B. H.; Bao, Z. N. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150.

[91]

Cao, Y.; Tan, Y. J.; Li, S.; Lee, W. W.; Guo, H. C.; Cai, Y. Q.; Wang, C.; Tee, B. C. K. Self-healing electronic skins for aquatic environments. Nat. Electron. 2019, 2, 75–82.

[92]

Li, Y.; Li, X. D.; Zhang, S. M.; Liu, L.; Hamad, N.; Bobbara, S. R.; Pasini, D.; Cicoira, F. Autonomic self-healing of PEDOT:PSS achieved via polyethylene glycol addition. Adv. Funct. Mater. 2020, 30, 2002853.

[93]

Park, Y. G.; Jang, J.; Kim, H.; Hwang, J. C.; Kwon, Y. W.; Park, J. U. Self-healable, recyclable anisotropic conductive films of liquid metal-gelatin hybrids for soft electronics. Adv. Electron. Mater. 2022, 8, 2101034.

[94]

Wei, D. L.; Wang, H. N.; Zhu, J. Q.; Luo, L. C.; Huang, H. B.; Li, L.; Yu, X. H. Highly stretchable, fast self-healing, responsive conductive hydrogels for supercapacitor electrode and motion sensor. Macromol. Mater. Eng. 2020, 305, 2000018.

[95]

Shi, B.; Li, L.; Chen, A. B.; Jen, T. C.; Liu, X. Y.; Shen, G. Z. Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nano-Micro Lett. 2022, 14, 34.

[96]

Wu, L. L.; Zhuang, Z. Z.; Li, S.; Ma, X. F.; Diao, W. J.; Bu, X. M.; Fang, Y. Ultrastretchable, super tough, and rapidly recoverable nanocomposite double-network hydrogels by dual physically hydrogen bond and vinyl-functionalized silica nanoparticles macro-crosslinking. Macromol. Mater. Eng. 2019, 304, 1800737.

[97]

Liu, Y. X.; Feig, V. R.; Bao, Z. N. Conjugated polymer for implantable electronics toward clinical application. Adv. Healthc. Mater. 2021, 10, 2001916.

[98]

Tang, H. R.; Liu, Z. X.; Hu, Z. C.; Liang, Y. Y.; Huang, F.; Cao, Y. Oxoammonium enabled secondary doping of hole transporting material PEDOT:PSS for high-performance organic solar cells. Sci. China Chem. 2020, 63, 802–809.

[99]

Cheng, T.; Zhang, Y. Z.; Wang, S.; Chen, Y. L.; Gao, S. Y.; Wang, F.; Lai, W. Y.; Huang, W. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 2021, 31, 2101303.

[100]

Li, Y.; Zhou, X.; Sarkar, B.; Gagnon-Lafrenais, N.; Cicoira, F. Recent progress on self-healable conducting polymers. Adv. Mater. 2022, 34, 2108932.

[101]

Chen, W.; Jiang, S. Q.; Xiao, H.; Zhou, X. F.; Xu, X. Y.; Yang, J. D.; Siddique, A. H.; Liu, Z. P. Graphene modified polyaniline-hydrogel based stretchable supercapacitor with high capacitance and excellent stretching stability. ChemSusChem 2021, 14, 938–945.

[102]

Qin, L. M.; Yang, G. Y.; Li, D.; Ou, K. T.; Zheng, H. Y.; Fu, Q.; Sun, Y. Y. High area energy density of all-solid-state supercapacitor based on double-network hydrogel with high content of graphene/PANI fiber. Chem. Eng. J. 2022, 430, 133045.

[103]

Zou, Y. L.; Chen, C.; Sun, Y. J.; Gan, S. C.; Dong, L. B.; Zhao, J. H.; Rong, J. H. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 2021, 418, 128616.

[104]

Lin, J. H.; Du, X. S. Self-healable and redox active hydrogel obtained via incorporation of ferric ion for supercapacitor applications. Chem. Eng. J. 2022, 446, 137244.

[105]

Zhang, S. M.; Li, Y.; Tomasello, G.; Anthonisen, M.; Li, X. D.; Mazzeo, M.; Genco, A.; Grutter, P.; Cicoira, F. Tuning the electromechanical properties of PEDOT:PSS films for stretchable transistors and pressure sensors. Adv. Electron. Mater. 2019, 5, 1900191.

[106]

Li, Y.; Zhang, S. M.; Li, X. D.; Unnava, V. R. N.; Cicoira, F. Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition. Flex. Print. Electron. 2019, 4, 044004.

[107]

Donahue, M. J.; Sanchez-Sanchez, A.; Inal, S.; Qu, J.; Owens, R. M.; Mecerreyes, D.; Malliaras, G. G.; Martin, D. C. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R Rep. 2020, 140, 100546.

[108]

Wang, J.; Li, Q.; Li, K. C.; Sun, X.; Wang, Y. Z.; Zhuang, T. T.; Yan, J. J.; Wang, H. Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 2022, 34, 2109904.

[109]

Yao, B. W.; Wang, H. Y.; Zhou, Q. Q.; Wu, M. M.; Zhang, M.; Li, C.; Shi, G. Q. Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 2017, 29, 1700974.

[110]

Zhang, S. M.; Ling, H. N.; Chen, Y. H.; Cui, Q. Y.; Ni, J. H.; Wang, X. C.; Hartel, M. C.; Meng, X.; Lee, K.; Lee, J. et al. Hydrogel-enabled transfer-printing of conducting polymer films for soft organic bioelectronics. Adv. Funct. Mater. 2020, 30, 1906016.

[111]

Li, Y.; Zhang, S. M.; Hamad, N.; Kim, K.; Liu, L.; Lerond, M.; Cicoira, F. Tailoring the self-healing properties of conducting polymer films. Macromol. Biosci. 2020, 20, 2000146.

[112]

Zhou, X.; Rajeev, A.; Subramanian, A.; Li, Y.; Rossetti, N.; Natale, G.; Lodygensky, G. A.; Cicoira, F. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Acta Biomater. 2022, 139, 296–306.

[113]

Zhu, B. C.; Chan, E. W. C.; Li, S. Y.; Sun, X.; Travas-Sejdic, J. Soft, flexible and self-healable supramolecular conducting polymer-based hydrogel electrodes for flexible supercapacitors. J. Mater. Chem. C 2022, 10, 14882–14891.

[114]

Liu, L. C.; Han, Y. Y.; Lv, S. S. Design of self-healing and electrically conductive silk fibroin-based hydrogels. ACS Appl. Mater. Interfaces 2019, 11, 20394–20403.

[115]

Chen, C. R.; Qin, H. L.; Cong, H. P.; Yu, S. H. A highly stretchable and real-time healable supercapacitor. Adv. Mater. 2019, 31, 1900573.

[116]

Liu, J. Y.; Zhong, Y.; Mu, K.; Han, T. L.; Zhang, H. G.; Si, T. A self-healing lithium-sulfur battery using gel-infilled microcapsules. ACS Appl. Energy Mater. 2021, 4, 6749–6756.

[117]

Ding, Q. Q.; Xu, X. W.; Yue, Y. Y.; Mei, C. T.; Huang, C. B.; Jiang, S. H.; Wu, Q. L.; Han, J. Q. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl. Mater. Interfaces 2018, 10, 27987–28002.

[118]

Zhang, W.; Feng, P.; Chen, J.; Sun, Z. M.; Zhao, B. X. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 2019, 88, 220–240.

[119]

Sun, Y. R.; Yu, F.; Li, C.; Dai, X. H.; Ma, J. Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification. Nano-Micro Lett. 2019, 12, 2.

[120]

Guo, Y.; Zheng, K. Q.; Wan, P. B. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 2018, 14, 1704497.

[121]

Xu, T.; Yang, D. Z.; Zhang, S. Y.; Zhao, T. Y.; Zhang, M.; Yu, Z. Z. Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon 2021, 171, 201–210.

[122]

Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.

[123]

Yu, T.; Lei, X. P.; Zhou, Y. L.; Chen, H. N. Ti3C2Tx MXenes reinforced PAA/CS hydrogels with self-healing function as flexible supercapacitor electrodes. Polym. Adv. Technol. 2021, 32, 3167–3179.

[124]

Lyu, F. C.; Yu, S. C.; Li, M. C.; Wang, Z. Y.; Nan, B.; Wu, S. F.; Cao, L. J.; Sun, Z. F.; Yang, M. Y.; Wang, W. X. et al. Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as high-performance anode materials for Li-ion batteries. Chem. Commun. 2017, 53, 2138–2141.

[125]

Hao, Z. H.; Tao, F.; Wang, Z. K.; Cui, X. M.; Pan, Q. M. An omni-healable and tailorable aqueous lithium-ion battery. ChemElectroChem 2018, 5, 637–642.

[126]

Lu, Y.; Zhang, Q.; Chen, J. Recent progress on lithium-ion batteries with high electrochemical performance. Sci. China Chem. 2019, 62, 533–548.

[127]

Zhang, L. J.; Wang, H. T.; Zhang, X. M.; Tang, Y. B. A review of emerging dual-ion batteries: Fundamentals and recent advances. Adv. Funct. Mater. 2021, 31, 2010958.

[128]

Shi, Q. T.; Zhou, J. H.; Ullah, S.; Yang, X. Q.; Tokarska, K.; Trzebicka, B.; Ta, H. Q.; Rümmeli, M. H. A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Mater. 2021, 34, 735–754.

[129]

Cai, Y. F.; Liu, C. X.; Yu, Z. A.; Ma, W. C.; Jin, Q.; Du, R. C.; Qian, B. Y.; Jin, X. X.; Wu, H. M.; Zhang, Q. H. et al. Slidable and highly ionic conductive polymer binder for high-performance Si anodes in lithium-ion batteries. Adv. Sci. 2023, 9, 2205590.

[130]

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Mesostructured carbon-based nanocages: An advanced platform for energy chemistry. Sci. China Chem. 2020, 63, 665–681.

[131]

Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size? Adv. Mater. 2022, 34, 2107836.

[132]

Wang, R. R.; Wu, R. B.; Ding, C. F.; Chen, Z. L.; Xu, H. B.; Liu, Y. F.; Zhang, J. C.; Ha, Y.; Fei, B.; Pan, H. G. Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li-S batteries. Nano-Micro Lett. 2021, 13, 151.

[133]

Zhao, Y. M.; Yue, F. S.; Li, S. C.; Zhang, Y.; Tian, Z. R.; Xu, Q.; Xin, S.; Guo, Y. G. Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries. InfoMat 2021, 3, 460–501.

[134]

Guo, Q. Y.; Zheng, Z. J. Rational design of binders for stable Li-S and Na-S batteries. Adv. Funct. Mater. 2020, 30, 1907931.

[135]

Nam, J.; Kim, E.; K. K, R.; Kim, Y.; Kim, T. H. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries. Sci. Rep. 2020, 10, 14966.

[136]

Chuang, Y. P.; Lin, Y. L.; Wang, C. C.; Hong, J. L. Dual cross-linked polymer networks derived from the hyperbranched poly(ethyleneimine) and poly(acrylic acid) as efficient binders for silicon anodes in lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 1583–1592.

[137]

Browning, K. L.; Sacci, R. L.; Doucet, M.; Browning, J. F.; Kim, J. R.; Veith, G. M. The study of the binder poly(acrylic acid) and its role in concomitant solid-electrolyte interphase formation on Si anodes. ACS Appl. Mater. Interfaces 2020, 12, 10018–10030.

[138]

Cho, Y.; Kim, J.; Elabd, A.; Choi, S.; Park, K.; Kwon, T. W.; Lee, J.; Char, K.; Coskun, A.; Choi, J. W. A pyrene-poly(acrylic acid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes. Adv. Mater. 2019, 31, 1905048.

[139]
Chen, J. H.; Zhang, Y.; Yang, J.; Nuli, Y. N.; Wang, J. L. Post lithium-sulfur battery era: Challenges and opportunities towards practical application. Sci. China Chem., in press, https://doi.org/10.1007/s11426-022-1421-7.
[140]

Zhong, H. X.; He, J. R.; Zhang, L. Z. Crosslinkable aqueous binders containing Arabic gum-grafted-poly(acrylic acid) and branched polyols for Si anode of lithium-ion batteries. Polymer 2021, 215, 123377.

[141]

Li, J. J.; Zhang, G. Z.; Yang, Y.; Yao, D. H.; Lei, Z. W.; Li, S.; Deng, Y. H.; Wang, C. Y. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. J. Power Sources 2018, 406, 102–109.

[142]

Wang, Y.; Xu, H.; Chen, X.; Jin, H.; Wang, J. P. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries. Energy Storage Mater. 2021, 38, 121–129.

[143]

Lee, W. J.; Oh, H. G.; Cha, S. H. A brief review of self-healing polyurethane based on dynamic chemistry. Macromol. Res. 2021, 29, 649–664.

[144]

Gao, C. H.; Gao, Y. L.; Wang, S. K.; Dong, Y. J.; Wu, Y. M.; Liu, Y. T.; Wang, C. X. Self-healing unsaturated polyester sensor based on multiple hydrogen bonds. Eur. Polym. J. 2022, 175, 111301.

[145]

Zhang, G. Z.; Yang, Y.; Chen, Y. H.; Huang, J.; Zhang, T.; Zeng, H. B.; Wang, C. Y.; Liu, G.; Deng, Y. H. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries. Small 2018, 14, 1801189.

[146]

Jiao, X. X.; Yin, J. Q.; Xu, X. Y.; Wang, J. L.; Liu, Y. Y.; Xiong, S. Z.; Zhang, Q. L.; Song, J. X. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2005699.

[147]

Jolley, M. J.; Pathan, T. S.; Wemyss, A. M.; Prokes, I.; Moharana, S.; Wan, C. Y.; Loveridge, M. J. Development and application of a poly(acrylic acid)-grafted styrene-butadiene rubber as a binder system for silicon-graphite anodes in Li-ion batteries. ACS Appl. Energy Mater. 2023, 6, 496–507.

[148]

Xu, Z. X.; Yang, J.; Zhang, T.; Nuli, Y. N.; Wang, J. L.; Hirano, S. I. Silicon microparticle anodes with self-healing multiple network binder. Joule 2018, 2, 950–961.

[149]

Liu, R. H.; Jiang, T.; Liu, D. Z.; Ma, X. A facile and green strategy to obtain organic room-temperature phosphorescence from natural lignin. Sci. China Chem. 2022, 65, 1100–1104.

[150]

Park, H. K.; Kong, B. S.; Oh, E. S. Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochem. Commun. 2011, 13, 1051–1053.

[151]

Song, J. X.; Zhou, M. J.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D. H.; Yu, Z. X.; Regula, M.; Wang, D. H. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904–5910.

[152]

Liang, Y. Y.; Offenhäusser, A.; Ingebrandt, S.; Mayer, D. PEDOT:PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals. Adv. Healthc. Mater. 2021, 10, 2100061.

[153]

Hu, S. M.; Wang, L. D. Y.; Huang, T.; Yu, A. S. A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries. J. Power Sources 2020, 449, 227472.

[154]

Rupp, H.; Bhandary, R.; Kulkarni, A.; Binder, W. Printable electrolytes: Tuning 3D-printing by multiple hydrogen bonds and added inorganic lithium-salts. Adv. Mater. Technol. 2022, 7, 2200088.

[155]

Kim, J.; Kim, M. S.; Lee, Y.; Kim, S. Y.; Sung, Y. E.; Ko, S. H. Hierarchically structured conductive polymer binders with silver nanowires for high-performance silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 17340–17347.

[156]

Ryu, J.; Kim, S.; Kim, J.; Park, S.; Lee, S.; Yoo, S.; Kim, J.; Choi, N. S.; Ryu, J. H.; Park, S. Room-temperature crosslinkable natural polymer binder for high-rate and stable silicon anodes. Adv. Funct. Mater. 2020, 30, 1908433.

[157]

Li, J.; Lewis, R. B.; Dahn, J. R. Sodium carboxymethyl cellulose: A potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid-State Lett. 2007, 10, A17.

[158]

Jeong, Y. K.; Choi, J. W. Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes. ACS Nano 2019, 13, 8364–8373.

[159]

Chen, Z.; Zhang, H. R.; Dong, T. T.; Mu, P. Z.; Rong, X. C.; Li, Z. T. Uncovering the chemistry of cross-linked polymer binders via chemical bonds for silicon-based electrodes. ACS Appl. Mater. Interfaces 2020, 12, 47164–47180.

[160]

Zhu, X. Y.; Zhang, F.; Zhang, L.; Zhang, L. Y.; Song, Y. Z.; Jiang, T.; Sayed, S.; Lu, C.; Wang, X. G.; Sun, J. Y. et al. A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage. Adv. Funct. Mater. 2018, 28, 1705015.

[161]

Li, Z. H.; Wu, G.; Yang, Y. J.; Wan, Z. W.; Zeng, X. M.; Yan, L. J.; Wu, S. X.; Ling, M.; Liang, C. D.; Hui, K. N. et al. An ion-conductive grafted polymeric binder with practical loading for silicon anode with high interfacial stability in lithium-ion batteries. Adv. Energy Mater. 2022, 12, 2201197.

[162]

Wang, H.; Wang, Y. Y.; Zheng, P. T.; Yang, Y.; Chen, Y. K.; Cao, Y. L.; Deng, Y. H.; Wang, C. Y. Self-healing double-cross-linked supramolecular binders of a polyacrylamide-grafted soy protein isolate for Li-S batteries. ACS Sustain. Chem. Eng. 2020, 8, 12799–12808.

[163]

Rajeev, K. K.; Nam, J.; Jang, W.; Kim, Y.; Kim, T. H. Polysaccharide-based self-healing polymer binder via Schiff base chemistry for high-performance silicon anodes in lithium-ion batteries. Electrochim. Acta 2021, 384, 138364.

[164]

Dufficy, M. K.; Corder, R. D.; Dennis, K. A.; Fedkiw, P. S.; Khan, S. A. Guar gel binders for silicon nanoparticle anodes: Relating binder rheology to electrode performance. ACS Appl. Mater. Interfaces 2021, 13, 51403–51413.

[165]

Su, Y. X.; Feng, X.; Zheng, R. B.; Lv, Y. Y.; Wang, Z. Y.; Zhao, Y.; Shi, L. Y.; Yuan, S. Binary network of conductive elastic polymer constraining nanosilicon for a high-performance lithium-ion battery. ACS Nano 2021, 15, 14570–14579.

[166]

Shi, Y. H.; Ma, D. Q.; Wang, W. J.; Zhang, L. F.; Xu, X. H. A supramolecular self-assembly hydrogel binder enables enhanced cycling of SnO2-based anode for high-performance lithium-ion batteries. J. Mater. Sci. 2017, 52, 3545–3555.

[167]

Gao, R. H.; Zhang, Q.; Zhao, Y.; Han, Z. Y.; Sun, C. B.; Sheng, J. Z.; Zhong, X. W.; Chen, B.; Li, C.; Ni, S. Y. et al. Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2110313.

[168]

Sun, Y. Z.; Huang, J. Q.; Zhao, C. Z.; Zhang, Q. A review of solid electrolytes for safe lithium-sulfur batteries. Sci. China Chem. 2017, 60, 1508–1526.

[169]

Gao, X. J.; Hu, Q. Z.; Sun, K. J.; Peng, H.; Xie, X.; Hamouda, H. A.; Ma, G. F. A novel all-in-one integrated flexible supercapacitor based on self-healing hydrogel electrolyte. J. Alloys Compd. 2021, 888, 161554.

[170]

Li, J. X.; Ren, J. F.; Li, C. X.; Li, P. X.; Wu, T. T.; Liu, S. W.; Wang, L. High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery. Nano Res. 2022, 15, 7190–7198.

[171]

Dai, H. L.; Zhang, G. X.; Rawach, D.; Fu, C. Y.; Wang, C.; Liu, X. H.; Dubois, M.; Lai, C.; Sun, S. H. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Mater. 2021, 34, 320–355.

[172]

Dubal, D. P.; Chodankar, N. R.; Kim, D. H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018, 47, 2065–2129.

[173]

Bhat, T. S.; Patil, P. S.; Rakhi, R. B. Recent trends in electrolytes for supercapacitors. J. Energy Storage 2022, 50, 104222.

[174]

Alipoori, S.; Mazinani, S.; Aboutalebi, S. H.; Sharif, F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Storage 2020, 27, 101072.

[175]

Bai, Y.; Liu, R.; Liu, Y.; Wang, Y. M.; Wang, X.; Xiao, H. H.; Yuan, G. H. Concentrated hydrogel electrolyte for integrated supercapacitor with high capacitance at subzero temperature. Sci. China Chem. 2021, 64, 852–860.

[176]

Wu, W. Y.; Duan, J.; Wen, J. Y.; Chen, Y. W.; Liu, X. Y.; Huang, L. Q.; Wang, Z. F.; Deng, S. Y.; Huang, Y. H.; Luo, W. A writable lithium metal ink. Sci. China Chem. 2020, 63, 1483–1489.

[177]

Lee, H.; Oh, P.; Kim, J.; Cha, H.; Chae, S.; Lee, S.; Cho, J. Advances and prospects of sulfide all-solid-state lithium batteries via one-to-one comparison with conventional liquid lithium ion batteries. Adv. Mater. 2019, 31, 1900376.

[178]

Zhang, H.; Chen, Y. H.; Li, C. M.; Armand, M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: A perspective. SusMat 2021, 1, 24–37.

[179]

Li, H. L.; Lv, T.; Sun, H. H.; Qian, G. J.; Li, N.; Yao, Y.; Chen, T. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nat. Commun. 2019, 10, 536.

[180]

Elizalde, F.; Amici, J.; Trano, S.; Vozzolo, G.; Aguirresarobe, R.; Versaci, D.; Bodoardo, S.; Mecerreyes, D.; Sardon, H.; Bella, F. Self-healable dynamic poly(urea-urethane) gel electrolyte for lithium batteries. J. Mater. Chem. A 2022, 10, 12588–12596.

[181]

Chen, T.; Kong, W. H.; Zhang, Z. W.; Wang, L.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Ma, L. B.; Yan, W.; Wang, Y. R. et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 2018, 54, 17–25.

[182]

Guo, P. L.; Su, A. Y.; Wei, Y. J.; Liu, X. K.; Li, Y.; Guo, F. F.; Li, J.; Hu, Z. Y.; Sun, J. Q. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 19413–19420.

[183]

Guo, C. X.; Cao, Y. F.; Li, J. F.; Li, H. P.; Kumar Arumugam, S.; Oleksandr, S.; Chen, F. Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries. Appl. Energy 2022, 323, 119571.

[184]

Song, X. L.; Wang, C. L.; Chen, J. W.; Xin, S.; Yuan, D.; Wang, Y. L.; Dong, K.; Yang, L. P.; Wang, G. Y.; Zhang, H. T. et al. Unraveling the synergistic coupling mechanism of Li+ transport in an “ionogel-in-ceramic” hybrid solid electrolyte for rechargeable lithium metal battery. Adv. Funct. Mater. 2022, 32, 2108706.

[185]

Li, Z.; Chu, L.; Li, S. L.; Chen, W. P.; Li, Z. Y.; Guo, P. L.; Hu, R. Z. Double-network ionogel electrolyte with superior mechanical performance and high safety for flexible lithium-ion batteries. ChemElectroChem 2022, 9, e202200337.

[186]

Wang, Y. L.; Li, B.; Sarman, S.; Mocci, F.; Lu, Z. Y.; Yuan, J. Y.; Laaksonen, A.; Fayer, M. D. Microstructural and dynamical heterogeneities in ionic liquids. Chem. Rev. 2020, 120, 5798–5877.

[187]

D’Angelo, A. J.; Panzer, M. J. Design of stretchable and self-healing gel electrolytes via fully zwitterionic polymer networks in solvate ionic liquids for Li-based batteries. Chem. Mater. 2019, 31, 2913–2922.

[188]

Xia, S. X.; Lopez, J.; Liang, C.; Zhang, Z. C.; Bao, Z. N.; Cui, Y.; Liu, W. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv. Sci. 2019, 6, 1802353.

[189]

Chen, X. Y.; Yi, L. G.; Zou, C. F.; Liu, J. L.; Yu, J.; Zang, Z. H.; Tao, X. Y.; Luo, Z. G.; Guo, X. W.; Chen, G. R. et al. High-performance gel polymer electrolyte with self-healing capability for lithium-ion batteries. ACS Appl. Energy Mater. 2022, 5, 5267–5276.

[190]

Deng, K. R.; Zhou, S. P.; Xu, Z. L.; Xiao, M.; Meng, Y. Z. A high ion-conducting, self-healing and nonflammable polymer electrolyte with dynamic imine bonds for dendrite-free lithium metal batteries. Chem. Eng. J. 2022, 428, 131224.

[191]

Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X. F.; Wang, T. Y.; Wang, Y. Z.; Kang, F. Y.; Li, B. H.; Wang, G. X. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 9134–9142.

[192]

Ji, G. C.; Hu, R. F.; Wang, Y. H.; Zheng, J. P. High energy density, flexible, low temperature resistant and self-healing Zn-ion hybrid capacitors based on hydrogel electrolyte. J. Energy Storage 2022, 46, 103858.

[193]

Yan, Y. C.; Duan, S. D.; Liu, B.; Wu, S. W.; Alsaid, Y.; Yao, B. W.; Nandi, S.; Du, Y. J.; Wang, T. W.; Li, Y. Z. et al. Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 2023, 35, 2211673.

[194]

Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem., Int. Ed. 2018, 57, 9810–9813.

[195]

Huang, S.; Wan, F.; Bi, S. S.; Zhu, J. C.; Niu, Z. Q.; Chen, J. A self-healing integrated all-in-one zinc-ion battery. Angew. Chem., Int. Ed. 2019, 58, 4313–4317.

[196]

Ling, W.; Mo, F. N.; Wang, J. Q.; Liu, Q. J.; Liu, Y.; Yang, Q. X.; Qiu, Y. J.; Huang, Y. Self-healable hydrogel electrolyte for dendrite-free and self-healable zinc-based aqueous batteries. Mater. Today Phys. 2021, 20, 100458.

[197]

Shao, Y. Y.; Zhao, J.; Hu, W. G.; Xia, Z.; Luo, J. R.; Zhou, Y. J.; Zhang, L.; Yang, X. Z.; Ma, N.; Yang, D. Z. et al. Regulating interfacial ion migration via wool keratin mediated biogel electrolyte toward robust flexible Zn-ion batteries. Small 2022, 18, 2107163.

[198]

Liu, X. J.; Li, X.; Yang, X. T.; Lu, J. Q.; Zhang, X.; Yuan, D.; Zhang, Y. Z. Influence of water on gel electrolytes for zinc-ion batteries. Chem.—Asian J. 2023, 18, e202201280.

[199]

Samanta, P.; Ghosh, S.; Kolya, H.; Kang, C. W.; Murmu, N. C.; Kuila, T. Molecular crowded “water-in-salt” polymer gel electrolyte for an ultra-stable Zn-ion battery. ACS Appl. Mater. Interfaces 2022, 14, 1138–1148.

[200]

Wu, Y.; Wang, N.; Liu, H.; Cui, R. K.; Gu, J. M.; Sun, R. B.; Zhu, Y. Q.; Gou, L.; Fan, X. Y.; Li, D. L. et al. Self-healing of surface defects on Zn electrode for stable aqueous zinc-ion batteries via manipulating the electrode/electrolyte interphases. J. Colloid Interface Sci. 2023, 629, 916–925.

[201]

Zhou, Z. F.; Li, G. C.; Zhang, J. J.; Zhao, Y. F. Wide working temperature range rechargeable lithium-sulfur batteries: A critical review. Adv. Funct. Mater. 2021, 31, 2107136.

[202]

Jin, X. T.; Song, L.; Dai, C. L.; Ma, H. Y.; Xiao, Y. K.; Zhang, X. Q.; Han, Y. Y.; Li, X. Y.; Zhang, J. T.; Zhao, Y. et al. A self-healing zinc ion battery under −20 °C. Energy Storage Mater. 2022, 44, 517–526.

Nano Research
Pages 3302-3323
Cite this article:
Li Y, Ding P, Gu Y, et al. Self-healable gels in electrochemical energy storage devices. Nano Research, 2024, 17(4): 3302-3323. https://doi.org/10.1007/s12274-023-6063-6
Topics:

856

Views

4

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 27 June 2023
Revised: 03 August 2023
Accepted: 03 August 2023
Published: 31 August 2023
© Tsinghua University Press 2023
Return