AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous garnet as filler of solid polymer electrolytes to enhance the performance of solid-state lithium batteries

Yang Zhang1Lei Zhang1Peng Guo1Chaoyan Zhang1Xiaochuan Ren2( )Zhen Jiang3( )Jianjun Song1Chuan Shi1( )
College of Physics, Qingdao University, Qingdao 266071, China
Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
Show Author Information

Graphical Abstract

The unique porous structure of Li6.4La3Zr2Al0.2O12 (LLZO) facilitates the interaction between polymer and filler and provides sufficient entrance for Li+ migration into the LLZO phase. Meanwhile, it offers continuous ionic migration channels with the interlinked LLZO grains, which only permit cation migration, thus increasing the lithium-ion conductive and transference number of solid polymer electrolytes (SPEs).

Abstract

In order to enhance the ionic conductivity of solid polymer electrolytes (SPEs) and their structural rigidity against lithium dendrite during lithium-ion battery (LIB) cycling, we propose porous garnet Li6.4La3Zr2Al0.2O12 (LLZO), as the filler to SPEs. The porous LLZO with interlinked grains was synthesized via a resol-assisted cationic coordinative co-assembly approach. The porous structure of LLZO with high specific surface area facilitates the interaction between polymer and filler and provides sufficient entrance for Li+ migration into the LLZO phase. Furthermore, the interconnection of LLZO grains forms continuous inorganic pathways for fast Li+ migration, which avoid the multiple diffusion for Li+ in interface. As a result, the SPEs with porous LLZO (SPE-PL) show a high ionic conductive of 0.73 mS·cm−1 at 30 °C and lithium-ion transference number of 0.40. The porous LLZO with uniformly dispersed pores also acts as an ion distributor to regulate ionic flux. The lithium-symmetrical batteries assembled with SPE-PL show a highly stable Li plating/stripping cycling for nearly 3000 h at 0.1 mA·cm−2. The corresponding Li/LiFePO4 batteries also exhibit excellent cyclic performance with capacity retention of 75% after nearly 500 cycles. This work brings new insights into the design of conductive fillers and the optimization of SPEs.

Electronic Supplementary Material

Download File(s)
12274_2023_6065_MOESM1_ESM.pdf (641.3 KB)

References

[1]

Lin, X. R.; Salari, M.; Arava, L. M. R.; Ajayan, P. M.; Grinstaff, M. W. High temperature electrical energy storage: Advances, challenges, and frontiers. Chem. Soc. Rev. 2016, 45, 5848–5887.

[2]

Shi, C.; Zhang, P.; Chen, L. X.; Yang, P. T.; Zhao, J. B. Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J. Power Sources 2014, 270, 547–553.

[3]
Feng, J. N.; Shi, C.; Dong, H. H.; Zhang, C. Y.; Liu, W. D.; Liu, Y.; Wang, T. Y.; Zhao, X. X.; Chen, S. Q.; Song, J. J. Design of ZnSe-CoSe heterostructure decorated in hollow N-doped carbon nanocage with generous adsorption and catalysis sites for the reversibly fast kinetics of polysulfide conversion. J. Energy Chem., in press, https://doi.org/10.1016/j.jechem.2023.07.007.
[4]

Li, J. Y.; Song, J. J.; Luo, L. Q.; Zhang, H. W.; Feng, J. N.; Zhao, X. X.; Guo, X.; Dong, H. H.; Chen, S. Q.; Liu, H. et al. Synergy of MXene with Se infiltrated porous N-doped carbon nanofibers as Janus electrodes for high-performance sodium/lithium-selenium batteries. Adv. Energy Mater. 2022, 12, 2200894.

[5]

Porcarelli, L.; Gerbaldi, C.; Bella, F.; Nair, J. R. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci. Rep. 2016, 6, 19892.

[6]

Zhang, H. R.; Zhang, J. J.; Ma, J.; Xu, G. J.; Dong, T. T.; Cui, G. L. Polymer electrolytes for high energy density ternary cathode material-based lithium batteries. Electrochem. Energy Rev. 2019, 2, 128–148.

[7]

Li, J. Y.; Zhang, H. W.; Luo, L. Q.; Li, H.; He, J. Y.; Zu, H. L.; Liu, L.; Liu, H.; Wang, F. Y.; Song, J. J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 2205–2213.

[8]

Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.

[9]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[10]

Nanda, S.; Gupta, A.; Manthiram, A. Anode-free full cells: A pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 2021, 11, 2000804.

[11]

Zhang, H. R.; Huang, L.; Xu, H. T.; Zhang, X. H.; Chen, Z.; Gao, C. H.; Lu, C. L.; Liu, Z.; Jiang, M. F.; Cui, G. L. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2022, 2, 201–208.

[12]

Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Mitigating thermal runaway of lithium-ion batteries. Joule 2020, 4, 743–770.

[13]

Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 2018, 30, 1705702.

[14]

Tang, B.; Zhao, Y. B.; Wang, Z. Y.; Chen, S. W.; Wu, Y. F.; Tseng, Y.; Li, L. J.; Guo, Y. L.; Zhou, Z.; Bo, S. H. Ultrathin salt-free polymer-in-ceramic electrolyte for solid-state sodium batteries. eScience 2021, 1, 194–202.

[15]

Zhang, S. N.; Zeng, Z.; Zhai, W.; Hou, G. M.; Chen, L. M.; Ci, L. N. Bifunctional in situ polymerized interface for stable LAGP-based lithium metal batteries. Adv. Mater. Interfaces 2021, 8, 2100072.

[16]

Han, X.; Wang, S. Y.; Xu, Y. B.; Zhong, G. M.; Zhou, Y.; Liu, B.; Jiang, X. Y.; Wang, X.; Li, Y.; Zhang, Z. Q. et al. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy Environ. Sci. 2021, 14, 5044–5056.

[17]

Lee, K.; Han, S.; Lee, J.; Lee, S.; Kim, J.; Ko, Y.; Kim, S.; Yoon, K.; Song, J. H.; Noh, J. H. et al. Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett. 2021, 7, 381–389.

[18]

Li, Z.; Xie, H. X.; Zhang, X. Y.; Guo, X. In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. J. Mater. Chem. A 2020, 8, 3892–3900.

[19]

Fu, C. K.; Ma, Y. L.; Zuo, P. J.; Zhao, W.; Tang, W. C.; Yin, G. P.; Wang, J. J.; Gao, Y. Z. In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. J. Power Sources 2021, 496, 229861.

[20]

Li, L. S.; Deng, Y. F.; Chen, G. H. Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. J. Energy Chem. 2020, 50, 154–177.

[21]

Wang, C. W.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y. F. et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257–4300.

[22]

Yan, Y. Y.; Ju, J. W.; Dong, S. M.; Wang, Y. T.; Huang, L.; Cui, L. F.; Jiang, F.; Wang, Q. L.; Zhang, Y. F.; Cui, G. L. In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 2021, 8, 2003887.

[23]

Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.

[24]

Yu, X. W.; Liu, Y. J.; Goodenough, J. B.; Manthiram, A. Rationally designed PEGDA-LLZTO composite electrolyte for solid-state lithium batteries. ACS Appl. Mater. Interfaces 2021, 13, 30703–30711.

[25]

Thangadurai, V.; Chen, B. W. Solid Li- and Na-ion electrolytes for next generation rechargeable batteries. Chem. Mater. 2022, 34, 6637–6658.

[26]

Dussart, T.; Rividi, N.; Fialin, M.; Toussaint, G.; Stevens, P.; Laberty-Robert, C. Critical current density limitation of LLZO solid electrolyte: Microstructure vs. interface. J. Electrochem. Soc. 2021, 168, 120550.

[27]

Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.

[28]

Duan, H.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Shi, J. L.; Shi, Y.; Wen, R.; Guo, Y. G.; Wan, L. J. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 2018, 10, 85–91.

[29]

Tian, Z. C.; Kim, D. A flexible, robust, and high ion-conducting solid electrolyte membranes enabled by interpenetrated network structure for all-solid-state lithium metal battery. J. Energy Chem. 2022, 68, 603–611.

[30]

Cheng, E. J.; Kimura, T.; Shoji, M.; Ueda, H.; Munakata, H.; Kanamura, K. Ceramic-based flexible sheet electrolyte for Li batteries. ACS Appl. Mater. Interfaces 2020, 12, 10382–10388.

[31]

Kim, J. H.; Park, D. H.; Jang, J. S.; Shin, J. H.; Kim, M. C.; Kim, S. B.; Moon, S. H.; Lee, S. N.; Park, K. W. High-performance free-standing hybrid solid electrolyte membrane combined with Li6.28Al0.24La3Zr2O12 and hexagonal-BN for all-solid-state lithium-based batteries. Chem. Eng. J. 2022, 446, 137035.

[32]

Amici, J.; Calderón, C. A.; Versaci, D.; Luque, G.; Barraco, D.; Leiva, E.; Francia, C.; Bodoardo, S. Composite polymer electrolyte with high inorganic additive contents to enable metallic lithium anode. Electrochim. Acta 2022, 404, 139772.

[33]

Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

[34]

Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184.

[35]

Song, Y. W.; Park, S. J.; Kim, M. Y.; Kang, B. S.; Hong, Y.; Kim, W. J.; Han, J. H.; Lim, J.; Kim, H. S. Fabrication and electrochemical behavior of flexible composite solid electrolyte for bipolar solid-state lithium batteries. J. Power Sources 2022, 542, 231789.

[36]

Liu, M.; Zhang, S. N.; Van Eck, E. R. H.; Wang, C.; Ganapathy, S.; Wagemaker, M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 2022, 17, 959–967.

[37]

He, J.; Chen, H. X.; Wang, D. W.; Zhang, Q.; Zhong, G. M.; Peng, Z. Q. Interfacial barrier of ion transport in poly(ethylene oxide)-Li7La3Zr2O12 composite electrolytes illustrated by 6Li-tracer nuclear magnetic resonance spectroscopy. J. Phys. Chem. Lett. 2022, 13, 1500–1505.

[38]

Fu, K.; Gong, Y. H.; Dai, J. Q.; Gong, A.; Han, X. G.; Yao, Y. G.; Wang, C. W.; Wang, Y. B.; Chen, Y. N.; Yan, C. Y. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094–7099.

[39]

Liu, K.; Wu, M. C.; Jiang, H. R.; Lin, Y. K.; Xu, J. B.; Zhao, T. S. A Janus-faced, perovskite nanofiber framework reinforced composite electrolyte for high-voltage solid lithium-metal batteries. J. Power Sources 2022, 526, 231172.

[40]

La Monaca, A.; Girard, G.; Savoie, S.; Veillette, R.; Krachkovskiy, S.; Pierini, F.; Vijh, A.; Rosei, F.; Paolella, A. Influence of TiIV substitution on the properties of a Li1.5Al0.5Ge1.5(PO4)3 nanofiber-based solid electrolyte. Nanoscale 2022, 14, 5094–5101.

[41]

Bae, J.; Li, Y. T.; Zhao, F.; Zhou, X. Y.; Ding, Y.; Yu, G. H. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 2018, 15, 46–52.

[42]

Li, R. G.; Guo, S. T.; Yu, L.; Wang, L. B.; Wu, D. B.; Li, Y. Q.; Hu, X. L. Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 2019, 6, 1900200.

[43]

Zekoll, S.; Marriner-Edwards, C.; Hekselman, A. K. O.; Kasemchainan, J.; Kuss, C.; Armstrong, D. E. J.; Cai, D. Y.; Wallace, R. J.; Richter, F. H.; Thijssen, J. H. J. et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 2018, 11, 185–201.

[44]

Gong, Y. H.; Fu, K.; Xu, S. M.; Dai, J. Q.; Hamann, T. R.; Zhang, L.; Hitz, G. T.; Fu, Z. Z.; Ma, Z. H.; McOwen, D. W. et al. Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries. Mater. Today 2018, 21, 594–601.

[45]

Shen, H.; Yi, E.; Amores, M.; Cheng, L.; Tamura, N.; Parkinson, D. Y.; Chen, G. Y.; Chen, K.; Doeff, M. Oriented porous LLZO 3D structures obtained by freeze casting for battery applications. J. Mater. Chem. A 2019, 7, 20861–20870.

[46]

Wang, C. Y.; Wan, X. Y.; Duan, L. L.; Zeng, P. Y.; Liu, L. L.; Guo, D. Y.; Xia, Y.; Elzatahry, A. A.; Xia, Y. Y.; Li, W. et al. Molecular design strategy for ordered mesoporous stoichiometric metal oxide. Angew. Chem., Int. Ed. 2019, 58, 15863–15868.

[47]

Zheng, Y. N.; Zhang, R.; Zhang, L.; Gu, Q. F.; Qiao, Z. A. A resol-assisted cationic coordinative Co-assembly approach to mesoporous ABO3 perovskite oxides with rich oxygen vacancy for enhanced hydrogenation of furfural to furfuryl alcohol. Angew. Chem., Int. Ed. 2021, 60, 4774–4781.

[48]

Zhou, Z. H.; Sun, T.; Cui, J.; Shen, X.; Shi, C.; Cao, S.; Zhao, J. B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. 2023, 16, 5080–5086.

[49]

Ren, Z. H.; Li, J. X.; Gong, Y. Y.; Shi, C.; Liang, J. N.; Li, Y. L.; He, C. X.; Zhang, Q. L.; Ren, X. Z. Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery. Energy Storage Mater. 2022, 51, 130–138.

[50]

Lu, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 2022, 6, 1172–1198.

[51]

Hahn, M.; Rosenbach, D.; Krimalowski, A.; Nazarenus, T.; Moos, R.; Thelakkat, M.; Danzer, M. A. Investigating solid polymer and ceramic electrolytes for lithium-ion batteries by means of an extended distribution of relaxation times analysis. Electrochim. Acta 2020, 344, 136060.

[52]

Shi, C.; Song, J. J.; Zhang, Y.; Wang, X. T.; Jiang, Z.; Sun, T.; Zhao, J. B. Revealing the mechanisms of lithium-ion transport and conduction in composite solid polymer electrolytes. Cell Rep. Phys. Sci. 2023, 4, 101321.

[53]

Kondori, A.; Jiang, Z.; Esmaeilirad, M.; Tamadoni Saray, M.; Kakekhani, A.; Kucuk, K.; Navarro Munoz Delgado, P.; Maghsoudipour, S.; Hayes, J.; Johnson, C. S. et al. Kinetically stable oxide overlayers on Mo3P nanoparticles enabling lithium-air batteries with low overpotentials and long cycle life. Adv. Mater. 2020, 32, 2004028.

[54]

Jiang, Z.; Rappe, A. M. Structure, diffusion, and stability of lithium salts in aprotic dimethyl sulfoxide and acetonitrile electrolytes. J. Phys. Chem. C 2022, 126, 10266–10272.

[55]

Jiang, Z.; Rappe, A. M. Uncovering the electrolyte-dependent transport mechanism of LiO2 in lithium-oxygen batteries. J. Am. Chem. Soc. 2022, 144, 22150–22158.

Nano Research
Pages 2663-2670
Cite this article:
Zhang Y, Zhang L, Guo P, et al. Porous garnet as filler of solid polymer electrolytes to enhance the performance of solid-state lithium batteries. Nano Research, 2024, 17(4): 2663-2670. https://doi.org/10.1007/s12274-023-6065-4
Topics:

685

Views

8

Crossref

12

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 03 May 2023
Revised: 27 July 2023
Accepted: 07 August 2023
Published: 02 September 2023
© Tsinghua University Press 2023
Return