In order to enhance the ionic conductivity of solid polymer electrolytes (SPEs) and their structural rigidity against lithium dendrite during lithium-ion battery (LIB) cycling, we propose porous garnet Li6.4La3Zr2Al0.2O12 (LLZO), as the filler to SPEs. The porous LLZO with interlinked grains was synthesized via a resol-assisted cationic coordinative co-assembly approach. The porous structure of LLZO with high specific surface area facilitates the interaction between polymer and filler and provides sufficient entrance for Li+ migration into the LLZO phase. Furthermore, the interconnection of LLZO grains forms continuous inorganic pathways for fast Li+ migration, which avoid the multiple diffusion for Li+ in interface. As a result, the SPEs with porous LLZO (SPE-PL) show a high ionic conductive of 0.73 mS·cm−1 at 30 °C and lithium-ion transference number of 0.40. The porous LLZO with uniformly dispersed pores also acts as an ion distributor to regulate ionic flux. The lithium-symmetrical batteries assembled with SPE-PL show a highly stable Li plating/stripping cycling for nearly 3000 h at 0.1 mA·cm−2. The corresponding Li/LiFePO4 batteries also exhibit excellent cyclic performance with capacity retention of 75% after nearly 500 cycles. This work brings new insights into the design of conductive fillers and the optimization of SPEs.
Lin, X. R.; Salari, M.; Arava, L. M. R.; Ajayan, P. M.; Grinstaff, M. W. High temperature electrical energy storage: Advances, challenges, and frontiers. Chem. Soc. Rev. 2016, 45, 5848–5887.
Shi, C.; Zhang, P.; Chen, L. X.; Yang, P. T.; Zhao, J. B. Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J. Power Sources 2014, 270, 547–553.
Li, J. Y.; Song, J. J.; Luo, L. Q.; Zhang, H. W.; Feng, J. N.; Zhao, X. X.; Guo, X.; Dong, H. H.; Chen, S. Q.; Liu, H. et al. Synergy of MXene with Se infiltrated porous N-doped carbon nanofibers as Janus electrodes for high-performance sodium/lithium-selenium batteries. Adv. Energy Mater. 2022, 12, 2200894.
Porcarelli, L.; Gerbaldi, C.; Bella, F.; Nair, J. R. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci. Rep. 2016, 6, 19892.
Zhang, H. R.; Zhang, J. J.; Ma, J.; Xu, G. J.; Dong, T. T.; Cui, G. L. Polymer electrolytes for high energy density ternary cathode material-based lithium batteries. Electrochem. Energy Rev. 2019, 2, 128–148.
Li, J. Y.; Zhang, H. W.; Luo, L. Q.; Li, H.; He, J. Y.; Zu, H. L.; Liu, L.; Liu, H.; Wang, F. Y.; Song, J. J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 2205–2213.
Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.
Nanda, S.; Gupta, A.; Manthiram, A. Anode-free full cells: A pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 2021, 11, 2000804.
Zhang, H. R.; Huang, L.; Xu, H. T.; Zhang, X. H.; Chen, Z.; Gao, C. H.; Lu, C. L.; Liu, Z.; Jiang, M. F.; Cui, G. L. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries. eScience 2022, 2, 201–208.
Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Mitigating thermal runaway of lithium-ion batteries. Joule 2020, 4, 743–770.
Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 2018, 30, 1705702.
Tang, B.; Zhao, Y. B.; Wang, Z. Y.; Chen, S. W.; Wu, Y. F.; Tseng, Y.; Li, L. J.; Guo, Y. L.; Zhou, Z.; Bo, S. H. Ultrathin salt-free polymer-in-ceramic electrolyte for solid-state sodium batteries. eScience 2021, 1, 194–202.
Zhang, S. N.; Zeng, Z.; Zhai, W.; Hou, G. M.; Chen, L. M.; Ci, L. N. Bifunctional in situ polymerized interface for stable LAGP-based lithium metal batteries. Adv. Mater. Interfaces 2021, 8, 2100072.
Han, X.; Wang, S. Y.; Xu, Y. B.; Zhong, G. M.; Zhou, Y.; Liu, B.; Jiang, X. Y.; Wang, X.; Li, Y.; Zhang, Z. Q. et al. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy Environ. Sci. 2021, 14, 5044–5056.
Lee, K.; Han, S.; Lee, J.; Lee, S.; Kim, J.; Ko, Y.; Kim, S.; Yoon, K.; Song, J. H.; Noh, J. H. et al. Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett. 2021, 7, 381–389.
Li, Z.; Xie, H. X.; Zhang, X. Y.; Guo, X. In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. J. Mater. Chem. A 2020, 8, 3892–3900.
Fu, C. K.; Ma, Y. L.; Zuo, P. J.; Zhao, W.; Tang, W. C.; Yin, G. P.; Wang, J. J.; Gao, Y. Z. In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery. J. Power Sources 2021, 496, 229861.
Li, L. S.; Deng, Y. F.; Chen, G. H. Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. J. Energy Chem. 2020, 50, 154–177.
Wang, C. W.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y. F. et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257–4300.
Yan, Y. Y.; Ju, J. W.; Dong, S. M.; Wang, Y. T.; Huang, L.; Cui, L. F.; Jiang, F.; Wang, Q. L.; Zhang, Y. F.; Cui, G. L. In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 2021, 8, 2003887.
Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.
Yu, X. W.; Liu, Y. J.; Goodenough, J. B.; Manthiram, A. Rationally designed PEGDA-LLZTO composite electrolyte for solid-state lithium batteries. ACS Appl. Mater. Interfaces 2021, 13, 30703–30711.
Thangadurai, V.; Chen, B. W. Solid Li- and Na-ion electrolytes for next generation rechargeable batteries. Chem. Mater. 2022, 34, 6637–6658.
Dussart, T.; Rividi, N.; Fialin, M.; Toussaint, G.; Stevens, P.; Laberty-Robert, C. Critical current density limitation of LLZO solid electrolyte: Microstructure vs. interface. J. Electrochem. Soc. 2021, 168, 120550.
Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.
Duan, H.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Shi, J. L.; Shi, Y.; Wen, R.; Guo, Y. G.; Wan, L. J. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 2018, 10, 85–91.
Tian, Z. C.; Kim, D. A flexible, robust, and high ion-conducting solid electrolyte membranes enabled by interpenetrated network structure for all-solid-state lithium metal battery. J. Energy Chem. 2022, 68, 603–611.
Cheng, E. J.; Kimura, T.; Shoji, M.; Ueda, H.; Munakata, H.; Kanamura, K. Ceramic-based flexible sheet electrolyte for Li batteries. ACS Appl. Mater. Interfaces 2020, 12, 10382–10388.
Kim, J. H.; Park, D. H.; Jang, J. S.; Shin, J. H.; Kim, M. C.; Kim, S. B.; Moon, S. H.; Lee, S. N.; Park, K. W. High-performance free-standing hybrid solid electrolyte membrane combined with Li6.28Al0.24La3Zr2O12 and hexagonal-BN for all-solid-state lithium-based batteries. Chem. Eng. J. 2022, 446, 137035.
Amici, J.; Calderón, C. A.; Versaci, D.; Luque, G.; Barraco, D.; Leiva, E.; Francia, C.; Bodoardo, S. Composite polymer electrolyte with high inorganic additive contents to enable metallic lithium anode. Electrochim. Acta 2022, 404, 139772.
Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.
Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184.
Song, Y. W.; Park, S. J.; Kim, M. Y.; Kang, B. S.; Hong, Y.; Kim, W. J.; Han, J. H.; Lim, J.; Kim, H. S. Fabrication and electrochemical behavior of flexible composite solid electrolyte for bipolar solid-state lithium batteries. J. Power Sources 2022, 542, 231789.
Liu, M.; Zhang, S. N.; Van Eck, E. R. H.; Wang, C.; Ganapathy, S.; Wagemaker, M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 2022, 17, 959–967.
He, J.; Chen, H. X.; Wang, D. W.; Zhang, Q.; Zhong, G. M.; Peng, Z. Q. Interfacial barrier of ion transport in poly(ethylene oxide)-Li7La3Zr2O12 composite electrolytes illustrated by 6Li-tracer nuclear magnetic resonance spectroscopy. J. Phys. Chem. Lett. 2022, 13, 1500–1505.
Fu, K.; Gong, Y. H.; Dai, J. Q.; Gong, A.; Han, X. G.; Yao, Y. G.; Wang, C. W.; Wang, Y. B.; Chen, Y. N.; Yan, C. Y. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094–7099.
Liu, K.; Wu, M. C.; Jiang, H. R.; Lin, Y. K.; Xu, J. B.; Zhao, T. S. A Janus-faced, perovskite nanofiber framework reinforced composite electrolyte for high-voltage solid lithium-metal batteries. J. Power Sources 2022, 526, 231172.
La Monaca, A.; Girard, G.; Savoie, S.; Veillette, R.; Krachkovskiy, S.; Pierini, F.; Vijh, A.; Rosei, F.; Paolella, A. Influence of TiIV substitution on the properties of a Li1.5Al0.5Ge1.5(PO4)3 nanofiber-based solid electrolyte. Nanoscale 2022, 14, 5094–5101.
Bae, J.; Li, Y. T.; Zhao, F.; Zhou, X. Y.; Ding, Y.; Yu, G. H. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 2018, 15, 46–52.
Li, R. G.; Guo, S. T.; Yu, L.; Wang, L. B.; Wu, D. B.; Li, Y. Q.; Hu, X. L. Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 2019, 6, 1900200.
Zekoll, S.; Marriner-Edwards, C.; Hekselman, A. K. O.; Kasemchainan, J.; Kuss, C.; Armstrong, D. E. J.; Cai, D. Y.; Wallace, R. J.; Richter, F. H.; Thijssen, J. H. J. et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 2018, 11, 185–201.
Gong, Y. H.; Fu, K.; Xu, S. M.; Dai, J. Q.; Hamann, T. R.; Zhang, L.; Hitz, G. T.; Fu, Z. Z.; Ma, Z. H.; McOwen, D. W. et al. Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries. Mater. Today 2018, 21, 594–601.
Shen, H.; Yi, E.; Amores, M.; Cheng, L.; Tamura, N.; Parkinson, D. Y.; Chen, G. Y.; Chen, K.; Doeff, M. Oriented porous LLZO 3D structures obtained by freeze casting for battery applications. J. Mater. Chem. A 2019, 7, 20861–20870.
Wang, C. Y.; Wan, X. Y.; Duan, L. L.; Zeng, P. Y.; Liu, L. L.; Guo, D. Y.; Xia, Y.; Elzatahry, A. A.; Xia, Y. Y.; Li, W. et al. Molecular design strategy for ordered mesoporous stoichiometric metal oxide. Angew. Chem., Int. Ed. 2019, 58, 15863–15868.
Zheng, Y. N.; Zhang, R.; Zhang, L.; Gu, Q. F.; Qiao, Z. A. A resol-assisted cationic coordinative Co-assembly approach to mesoporous ABO3 perovskite oxides with rich oxygen vacancy for enhanced hydrogenation of furfural to furfuryl alcohol. Angew. Chem., Int. Ed. 2021, 60, 4774–4781.
Zhou, Z. H.; Sun, T.; Cui, J.; Shen, X.; Shi, C.; Cao, S.; Zhao, J. B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. 2023, 16, 5080–5086.
Ren, Z. H.; Li, J. X.; Gong, Y. Y.; Shi, C.; Liang, J. N.; Li, Y. L.; He, C. X.; Zhang, Q. L.; Ren, X. Z. Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery. Energy Storage Mater. 2022, 51, 130–138.
Lu, Y.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 2022, 6, 1172–1198.
Hahn, M.; Rosenbach, D.; Krimalowski, A.; Nazarenus, T.; Moos, R.; Thelakkat, M.; Danzer, M. A. Investigating solid polymer and ceramic electrolytes for lithium-ion batteries by means of an extended distribution of relaxation times analysis. Electrochim. Acta 2020, 344, 136060.
Shi, C.; Song, J. J.; Zhang, Y.; Wang, X. T.; Jiang, Z.; Sun, T.; Zhao, J. B. Revealing the mechanisms of lithium-ion transport and conduction in composite solid polymer electrolytes. Cell Rep. Phys. Sci. 2023, 4, 101321.
Kondori, A.; Jiang, Z.; Esmaeilirad, M.; Tamadoni Saray, M.; Kakekhani, A.; Kucuk, K.; Navarro Munoz Delgado, P.; Maghsoudipour, S.; Hayes, J.; Johnson, C. S. et al. Kinetically stable oxide overlayers on Mo3P nanoparticles enabling lithium-air batteries with low overpotentials and long cycle life. Adv. Mater. 2020, 32, 2004028.
Jiang, Z.; Rappe, A. M. Structure, diffusion, and stability of lithium salts in aprotic dimethyl sulfoxide and acetonitrile electrolytes. J. Phys. Chem. C 2022, 126, 10266–10272.
Jiang, Z.; Rappe, A. M. Uncovering the electrolyte-dependent transport mechanism of LiO2 in lithium-oxygen batteries. J. Am. Chem. Soc. 2022, 144, 22150–22158.