AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance organic electrochemical transistors gated with 3D-printed graphene oxide electrodes

Xingyu Jiang1,§Zhiqiang Liang1,§Miao Wu1Jie Lu1Cheng Shi1Qi Wang1Zi Wang2Zhen Jin3( )Lin Jiang1( )Lizhen Huang1( )Lifeng Chi1( )
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Suzhou Laboratory, Suzhou 215123, China
Analysis and Test Center, Soochow University, Suzhou 215123, China

§ Xingyu Jiang and Zhiqiang Liang contributed equally to this work.

Show Author Information

Graphical Abstract

A three-dimensional (3D)-printed graphene oxide was introduced to construct high-performance organic electrochemical transistors (OECTs) with both top and planar architectures. 3D-printed graphene-oxide-gated OECTs demonstrate comparable performance to Ag/AgCl and excellent mechanical flexibility, enabling promising application in flexible bioelectronics.

Abstract

Organic electrochemical transistors (OECTs) have garnered significant interest due to their ability to facilitate both ionic and electronic transport. A large proportion of research efforts thus far have focused on investigating high-performance materials that can serve as mixed ion doping and charge transport layers. However, relatively less attention has been given to the gate-electrode materials, which play a critical role in controlling operational voltage, redox processes, and stability, especially in the context of semiconductor-based OECTs working in accumulation mode. Moreover, the demand for planarity and flexibility in modern bioelectronic devices presents significant challenges for the commonly used Ag/AgCl electrodes in OECTs. Herein, we report the construction of high-performance accumulation-mode OECTs by utilizing a gate electrode made of three-dimensional (3D)-printed graphene oxide. The 3D-printed graphene oxide electrode incorporating one-dimensional (1D) carbon nanotubes, is directly printed using an aqueous-based ink and showcases exceptional mechanical flexibility and porosity properties, enabling high-throughput preparation for both top gates and integrated planar architecture, as well as fast ion/charge transport. OECTs with high performance comparable to that of Ag/AgCl-gated OECTs are thus achieved and present promising feasibility for electrocardiograph (ECG) signal recording. This provides a promising choice for the application of flexible bioelectronics in medical care and neurological recording.

Electronic Supplementary Material

Download File(s)
12274_2023_6067_MOESM1_ESM.pdf (913.4 KB)
12274_2023_6067_MOESM2_ESM.pdf (722.9 KB)

References

[1]

Ghittorelli, M.; Lingstedt, L.; Romele, P.; Crăciun, N. I.; Kovács-Vajna, Z. M.; Blom, P. W. M.; Torricelli, F. High-sensitivity ion detection at low voltages with current-driven organic electrochemical transistors. Nat. Commun. 2018, 9, 1441.

[2]

Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.

[3]

Gkoupidenis, P.; Koutsouras, D. A.; Malliaras, G. G. Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 2017, 8, 15448.

[4]

Gerasimov, J. Y.; Gabrielsson, R.; Forchheimer, R.; Stavrinidou, E.; Simon, D. T.; Berggren, M.; Fabiano, S. An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. (Weinh.) 2019, 6, 1801339.

[5]

Khodagholy, D.; Doublet, T.; Quilichini, P.; Gurfinkel, M.; Leleux, P.; Ghestem, A.; Ismailova, E.; Hervé, T.; Sanaur, S.; Bernard, C. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 2013, 4, 1575.

[6]

Boda, U.; Petsagkourakis, I.; Beni, V.; Andersson Ersman, P.; Tybrandt, K. Fully screen-printed stretchable organic electrochemical transistors. Adv. Mater. Technol. 2023, 8, 2300247.

[7]

Bernards, D. A.; Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 2007, 17, 3538–3544.

[8]

Nielsen, C. B.; Giovannitti, A.; Sbircea, D. T.; Bandiello, E.; Niazi, M. R.; Hanifi, D. A.; Sessolo, M.; Amassian, A.; Malliaras, G. G.; Rivnay, J. et al. Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 2016, 138, 10252–10259.

[9]

Sun, H. D.; Vagin, M.; Wang, S. H.; Crispin, X.; Forchheimer, R.; Berggren, M.; Fabiano, S. Complementary logic circuits based on high-performance n-type organic electrochemical transistors. Adv. Mater. 2018, 30, 1704916.

[10]

Giovannitti, A.; Nielsen, C. B.; Sbircea, D. T.; Inal, S.; Donahue, M.; Niazi, M. R.; Hanifi, D. A.; Amassian, A.; Malliaras, G. G.; Rivnay, J. et al. N-type organic electrochemical transistors with stability in water. Nat. Commun. 2016, 7, 13066.

[11]

Inal, S.; Rivnay, J.; Leleux, P.; Ferro, M.; Ramuz, M.; Brendel, J. C.; Schmidt, M. M.; Thelakkat, M.; Malliaras, G. G. A high transconductance accumulation mode electrochemical transistor. Adv. Mater. 2014, 26, 7450–7455.

[12]

Flagg, L. Q.; Bischak, C. G.; Onorato, J. W.; Rashid, R. B.; Luscombe, C. K.; Ginger, D. S. Polymer crystallinity controls water uptake in glycol side-chain polymer organic electrochemical transistors. J. Am. Chem. Soc. 2019, 141, 4345–4354.

[13]

Berto, M.; Vecchi, E.; Baiamonte, L.; Condò, C.; Sensi, M.; Di Lauro, M.; Sola, M.; De Stradis, A.; Biscarini, F.; Minafra, A. et al. Label free detection of plant viruses with organic transistor biosensors. Sens. Actuat. B: Chem. 2019, 281, 150–156.

[14]

Huang, L. Z.; Wang, Z.; Chen, J. H.; Wang, B. H.; Chen, Y.; Huang, W.; Chi, L. F.; Marks, T. J.; Facchetti, A. Porous semiconducting polymers enable high-performance electrochemical transistors. Adv. Mater. 2021, 33, 2007041.

[15]

Paterson, A. F.; Faber, H.; Savva, A.; Nikiforidis, G.; Gedda, M.; Hidalgo, T. C.; Chen, X. X.; McCulloch, I.; Anthopoulos, T. D.; Inal, S. On the role of contact resistance and electrode modification in organic electrochemical transistors. Adv. Mater. 2019, 31, 1902291.

[16]

Sensi, M.; Berto, M.; Candini, A.; Liscio, A.; Cossarizza, A.; Beni, V.; Biscarini, F.; Bortolotti, C. A. Modulating the Faradic operation of all-printed organic electrochemical transistors by facile in situ modification of the gate electrode. ACS Omega 2019, 4, 5374–5381.

[17]

Mishra, A.; Singh, S.; Shukla, S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinson’s disease. J. Exp. Neurosci. 2018, 12, 1–8.

[18]

Zhang, M.; Liao, C. Z.; Yao, Y. L.; Liu, Z. K.; Gong, F. F.; Yan, F. High-performance dopamine sensors based on whole-graphene solution-gated transistors. Adv. Funct. Mater. 2014, 24, 978–985.

[19]

Liao, C. Z.; Zhang, M.; Niu, L. Y.; Zheng, Z. J.; Yan, F. Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. J. Mater. Chem. B 2014, 2, 191–200.

[20]

Tao, W. Y.; Lin, P.; Hu, J.; Ke, S. M.; Song, J. J.; Zeng, X. R. A sensitive DNA sensor based on an organic electrochemical transistor using a peptide nucleic acid-modified nanoporous gold gate electrode. RSC Adv. 2017, 7, 52118–52124.

[21]

Yang, A. M.; Song, J. J.; Liu, H.; Zhao, Z. Y.; Li, L.; Yan, F. Wearable organic electrochemical transistor array for skin-surface electrocardiogram mapping above a human heart. Adv. Funct. Mater. 2023, 33, 2215037.

[22]

Wang, W. J.; Li, Z. X.; Li, M. C.; Fang, L. Y.; Chen, F. B.; Han, S. J.; Lan, L. Y.; Chen, J. X.; Chen, Q. Z.; Wang, H. S. et al. High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces. Nano-Micro Lett. 2022, 14, 184.

[23]

Ren, G. Z.; Fan, H.; Zhang, L. R.; He, S. H.; Zhu, C. C.; Gao, K.; Zhang, Y. L.; Wang, J. J.; Kang, X.; Song, Y. X. et al. A laser-induced graphene-based flexible and all-carbon organic electrochemical transistor. J. Mater. Chem. C 2023, 11, 4916–4928.

[24]

Battistoni, S.; Peruzzi, C.; Verna, A.; Marasso, S. L.; Cocuzza, M.; Erokhin, V.; Iannotta, S. Synaptic response in organic electrochemical transistor gated by a graphene electrode. Flex. Print. Electron. 2019, 4, 044002.

[25]

Demuru, S.; Huang, C. H.; Parvez, K.; Worsley, R.; Mattana, G.; Piro, B.; Noël, V.; Casiraghi, C.; Briand, D. All-inkjet-printed graphene-gated organic electrochemical transistors on polymeric foil as highly sensitive enzymatic biosensors. ACS Appl. Nano Mater. 2022, 5, 1664–1673.

[26]

Massetti, M.; Zhang, S. L.; Harikesh, P. C.; Burtscher, B.; Diacci, C.; Simon, D. T.; Liu, X. J.; Fahlman, M.; Tu, D. Y.; Berggren, M. et al. Fully 3D-printed organic electrochemical transistors. npj Flex. Electron. 2023, 7, 11.

[27]

Kergoat, L.; Piro, B.; Simon, D. T.; Pham, M. C.; Noël, V.; Berggren, M. Detection of glutamate and acetylcholine with organic electrochemical transistors based on conducting polymer/platinum nanoparticle composites. Adv. Mater. 2014, 26, 5658–5664.

[28]

Tarabella, G.; Santato, C.; Yang, S. Y.; Iannotta, S.; Malliaras, G. G.; Cicoira, F. Effect of the gate electrode on the response of organic electrochemical transistors. Appl. Phys. Lett. 2010, 97, 123304.

[29]

Wang, S. J.; Chen, X.; Zhao, C.; Kong, Y. X.; Lin, B. J.; Wu, Y. Y.; Bi, Z. Z.; Xuan, Z. Y.; Li, T.; Li, Y. X. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 2023, 6, 281–291.

[30]

Song, J. J.; Liu, H.; Zhao, Z. Y.; Guo, X. Y.; Liu, C.-K.; Griggs, S.; Marks, A.; Zhu, Y.; Law, H. K.-w.; McCulloch, I. et al. Breath figure-derived porous semiconducting films for organic electronics. Sci. Adv. 2023, 9, eadd9627.

[31]

Rohaizad, N.; Mayorga-Martinez, C. C.; Novotný, F.; Webster, R. D.; Pumera, M. 3D-printed Ag/AgCl pseudo-reference electrodes. Electrochem. Commun. 2019, 103, 104–108.

[32]

Braendlein, M.; Pappa, A. M.; Ferro, M.; Lopresti, A.; Acquaviva, C.; Mamessier, E.; Malliaras, G. G.; Owens, R. M. Lactate detection in tumor cell cultures using organic transistor circuits. Adv. Mater. 2017, 29, 1605744.

[33]

Moschou, D.; Trantidou, T.; Regoutz, A.; Carta, D.; Morgan, H.; Prodromakis, T. Surface and electrical characterization of Ag/AgCl pseudo-reference electrodes manufactured with commercially available PCB technologies. Sensors 2015, 15, 18102–18113.

[34]

Torres-González, V.; Ávila-Niño, J. A.; Araujo, E. Facile fabrication of tailorable Ag/AgCl reference electrodes for planar devices. Thin Solid Films 2022, 757, 139413.

[35]

Ruiz-Morales, J. C.; Tarancón, A.; Canales-Vázquez, J.; Méndez-Ramos, J.; Hernández-Afonso, L.; Acosta-Mora, P.; Rueda, J. R. M.; Fernández-González, R. Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 2017, 10, 846–859.

[36]

Fu, K.; Yao, Y. G.; Dai, J. Q.; Hu, L. B. Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 2017, 29, 1603486.

[37]

Truby, R. L.; Lewis, J. A. Printing soft matter in three dimensions. Nature. 2016, 540, 371–378.

[38]

Farahani, R. D.; Dubé, M.; Therriault, D. Three-dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Adv. Mater. 2016, 28, 5794–5821.

[39]

Giovannitti, A.; Sbircea, D. T.; Inal, S.; Nielsen, C. B.; Bandiello, E.; Hanifi, D. A.; Sessolo, M.; Malliaras, G. G.; McCulloch, I.; Rivnay, J. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. USA 2016, 113, 12017–12022.

[40]

Taniguchi, M.; Kawai, T. Characteristics of electrochemical transistors. Mol. Cryst. Liq. Cryst. 2006, 444, 61–66.

[41]

Yang, M.; Zhao, N. F.; Cui, Y.; Gao, W. W.; Zhao, Q.; Gao, C.; Bai, H.; Xie, T. Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano. 2017, 11, 6817–6824.

[42]

Peng, M. W.; Wen, Z.; Xie, L. J.; Cheng, J.; Jia, Z.; Shi, D. L.; Zeng, H. J.; Zhao, B.; Liang, Z. Q.; Li, T. et al. 3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience. Adv. Mater. 2019, 31, 1902930.

[43]

Shao, Y. L.; El-Kady, M. F.; Lin, C. W.; Zhu, G. Z.; Marsh, K. L.; Hwang, J. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Kaner, R. B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 2016, 28, 6719–6726.

[44]

Flagg, L. Q.; Giridharagopal, R.; Guo, J. J.; Ginger, D. S. Anion-dependent doping and charge transport in organic electrochemical transistors. Chem. Mater. 2018, 30, 5380–5389.

[45]

Cendra, C.; Giovannitti, A.; Savva, A.; Venkatraman, V.; McCulloch, I.; Salleo, A.; Inal, S.; Rivnay, J. Role of the anion on the transport and structure of organic mixed conductors. Adv. Funct. Mater. 2019, 29, 1807034.

Nano Research
Pages 12689-12696
Cite this article:
Jiang X, Liang Z, Wu M, et al. High-performance organic electrochemical transistors gated with 3D-printed graphene oxide electrodes. Nano Research, 2023, 16(11): 12689-12696. https://doi.org/10.1007/s12274-023-6067-2
Topics:

712

Views

2

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 30 May 2023
Revised: 26 July 2023
Accepted: 07 August 2023
Published: 12 September 2023
© Tsinghua University Press 2023
Return