AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Realize ultralow-energy-consumption photo-synaptic device based on a single (Al,Ga)N nanowire for neuromorphic computing

Xiushuo Gu1,2,§Min Zhou2,3,§Yukun Zhao2,3( )Qianyi Zhang1,2Jianya Zhang4Yonglin Huang1( )Shulong Lu2,3
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China

§ Xiushuo Gu and Min Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

It is pretty novel to demonstrate a light-stimulated synaptic device based on a single (Al,Ga)N nanowire successfully, which can mimic the multiple functions of biological synapses under the stimulation of both 310 and 365 nm photons. The energy consumption of the synaptic device can be reduced to 5.58 × 10−13 J, which is close to that of biological synapses in the human brain. Thanks to the advantage of ultralow energy consumption, this work shows great potential in promoting the development of brain-inspired systems and high-level integrated neuromorphic computing.

Abstract

The rapid development of artificial intelligence poses an urgent need for low-energy-consumption and small-sized artificial photonic synapses. Here, it is pretty novel to demonstrate a light-stimulated synaptic device based on a single (Al,Ga)N nanowire successfully. Thanks to the presence of vacancy defects in the single nanowire, the artificial synaptic device can simulate multiple functions of biological synapses under stimulation of both 310 and 365 nm light photons, including paired-pulse facilitation, spike timing dependent plasticity, and memory learning capabilities. The energy consumption of artificial synaptic device can be reduced as little as 5.58 × 10−13 J, which is close to that of the biological synapse in human brain. Furthermore, the synaptic device is demonstrated to have the high stability for both long-time stimulation and long-time storage. Based on the experimental conductance of long-term potentiation and long-term depression, the simulated three-layer neural network can achieve a high recognition rate of 92% after only 10 training epochs. With a brain-like behavior, the single-nanowire-based synaptic devices can promote the development of visual neuromorphic computing technology and artificial intelligence systems requiring ultralow energy consumption.

Electronic Supplementary Material

Download File(s)
12274_2023_6069_MOESM1_ESM.pdf (622 KB)

References

[1]

Hu, G. F.; An, H.; Xi, J. G.; Lu, J. F.; Hua, Q. L.; Peng, Z. C. A ZnO micro/nanowire-based photonic synapse with piezo-phototronic modulation. Nano Energy 2021, 89, 106282.

[2]

Li, Y.; Ling, S. T.; He, R. Y.; Zhang, C.; Dong, Y.; Ma, C. L.; Jiang, Y. C.; Gao, J.; He, J. H.; Zhang, Q. C. A robust graphene oxide memristor enabled by organic pyridinium intercalation for artificial biosynapse application. Nano Res. 2023, 16, 11278–11287.

[3]

Xue, W. H.; Ci, W. J.; Xu, X. H.; Liu, G. Optoelectronic memristor for neuromorphic computing. Chin. Phys. B 2020, 29, 048401.

[4]

Zhao, J. S.; Zheng, S. T.; Zhou, L. W.; Mi, W.; Ding, Y.; Wang, M. An artificial optoelectronic synapse based on MoOx film. Nanotechnology 2023, 34, 145201.

[5]

Monalisha, P.; Li, S. Y.; Bhat, S. G.; Jin, T. L.; Kumar, P. S. A.; Piramanayagam, S. N. Synaptic behavior of Fe3O4-based artificial synapse by electrolyte gating for neuromorphic computing. J. Appl. Phys. 2023, 133, 084901.

[6]

Zhang, Y. C.; Liu, L.; Tu, B.; Cui, B.; Guo, J. H.; Zhao, X.; Wang, J. Y.; Yan, Y. An artificial synapse based on molecular junctions. Nat. Commun. 2023, 14, 247.

[7]

Mo, Y. H.; Luo, B. C.; Dong, H. J.; Hou, B. Y. Light-stimulated artificial synapses based on Si-doped GaN thin films. J. Mater. Chem. C 2022, 10, 13099–13106.

[8]

He, W. X.; Fang, Y.; Yang, H. H.; Wu, X. M.; He, L. H.; Chen, H. P.; Guo, T. L. A multi-input light-stimulated synaptic transistor for complex neuromorphic computing. J. Mater. Chem. C 2019, 7, 12523–12531.

[9]

Huang, F.; Fang, F. E.; Zheng, Y.; You, Q.; Li, H. N.; Fang, S. F.; Cong, X. N.; Jiang, K.; Wang, Y.; Han, C. et al. Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res. 2023, 16, 1304–1312.

[10]

Li, J.; Wen, S. K.; Jiang, D. L.; Li, L. K.; Zhang, J. H. Fully solution-processed InSnO/HfGdOx thin-film transistor for light-stimulated artificial synapse. Flex. Print. Electron. 2022, 7, 014006.

[11]

Wang, Y. Q.; Wang, W. X.; Zhang, C. W.; Kan, H.; Yue, W. J.; Pang, J. B.; Gao, S.; Li, Y. A Digital-analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing. ACS Appl. Electron. Mater. 2022, 4, 3525–3534.

[12]

Shen, C.; Gao, X.; Chen, C.; Ren, S.; Xu, J. L.; Xia, Y. D.; Wang, S. D. ZnO nanowire optoelectronic synapse for neuromorphic computing. Nanotechnology 2022, 33, 065205.

[13]

Lee, M.; Park, W.; Son, H.; Seo, J.; Kwon, O.; Oh, S.; Hahm, M. G.; Kim, U. J.; Cho, B. Brain-inspired ferroelectric Si nanowire synaptic device. APL Mater. 2021, 9, 031103.

[14]

Sinito, C.; Corfdir, P.; Pfüller, C.; Gao, G.; Bartolomé, J.; Kölling, S.; Doblado, A. R.; Jahn, U.; Lähnemann, J.; Auzelle, T. et al. Absence of quantum-confined stark effect in GaN quantum disks embedded in (Al,Ga)N nanowires grown by molecular beam epitaxy. Nano Lett. 2019, 19, 5938–5948.

[15]

Zhou, M.; Zhao, Y. K.; Yang, W. X.; Zhang, J. Y.; Jiang, M.; Wu, Y. Y.; Xu, Z. W.; Lu, S. L. Detached vertical (Al,Ga)N nanowires to realize the flexible ultraviolet photodetector with high ultraviolet/visible reject ratio and detectivity. Energy Technol. 2022, 10, 2200885.

[16]

Jiang, M.; Zhang, J. Y.; Yang, W. X.; Wu, D. M.; Zhao, Y. K.; Wu, Y. Y.; Zhou, M.; Lu, S. L. Flexible self-powered photoelectrochemical photodetector with ultrahigh detectivity, ultraviolet/visible reject ratio, stability, and a quasi-invisible functionality based on lift-off vertical (Al,Ga)N nanowires. Adv. Mater. Interfaces 2022, 9, 2200028.

[17]

Hong, X. T.; Huang, Y. L.; Tian, Q. L.; Zhang, S.; Liu, C.; Wang, L. M.; Zhang, K.; Sun, J.; Liao, L.; Zou, X. M. Two-dimensional perovskite-gated AlGaN/GaN high-electron-mobility-transistor for neuromorphic vision sensor. Adv. Sci. 2022, 9, 2202019.

[18]

Li, J.; Wu, J. N.; Chen, L.; An, X. S.; Yin, J. H.; Wu, Y. P.; Zhu, L.; Yi, H. X.; Li, K. H. On-chip integration of III-nitride flip-chip light-emitting diodes with photodetectors. J. Lightwave Technol. 2021, 39, 2603–2608.

[19]

Hetzl, M.; Winnerl, J.; Francaviglia, L.; Kraut, M.; Döblinger, M.; Matich, S.; Morral, A. F. I.; Stutzmann, M. Surface passivation and self-regulated shell growth in selective area-grown GaN-(Al,Ga)N core–shell nanowires. Nanoscale 2017, 9, 7179–7188.

[20]

Sun, B.; Guo, T.; Zhou, G. D.; Ranjan, S.; Jiao, Y. X.; Wei, L.; Zhou, Y. N.; Wu, Y. A. Synaptic devices based neuromorphic computing applications in artificial intelligence. Mater. Today Phys. 2021, 18, 100393.

[21]

Drachman, D. A. Do we have brain to spare. Neurology 2005, 64, 2004–2005.

[22]

Jiang, M.; Zhao, Y. K.; Bian, L. F.; Yang, W. X.; Zhang, J. Y.; Wu, Y. Y.; Zhou, M.; Lu, S. L.; Qin, H. Self-powered photoelectrochemical (Al, Ga)N photodetector with an ultrahigh ultraviolet/visible reject ratio and a quasi-invisible functionality for 360° omnidirectional detection. ACS Photonics 2021, 8, 3282–3290.

[23]

Zhang, J. Y.; Jiao, B.; Dai, J. F.; Wu, D. M.; Wu, Z. X.; Bian, L. F.; Zhao, Y. K.; Yang, W. X.; Jiang, M.; Lu, S. L. Enhance the responsivity and response speed of self-powered ultraviolet photodetector by GaN/CsPbBr3 core–shell nanowire heterojunction and hydrogel. Nano Energy 2022, 100, 107437.

[24]

Wang, Y.; Zhu, Y. Y.; Li, Y. Y.; Zhang, Y. Q.; Yang, D. R.; Pi, X. D. Dual-modal optoelectronic synaptic devices with versatile synaptic plasticity. Adv. Funct. Mater. 2022, 32, 2107973.

[25]

Fan, Z. H.; Zhang, M.; Gan, L. R.; Chen, L.; Zhu, H.; Sun, Q. Q.; Zhang, D. W. ReS2 charge trapping synaptic device for face recognition application. Nanoscale Res. Lett. 2020, 15, 2.

[26]

Zhou, M.; Zhao, Y. K.; Bian, L. F.; Zhang, J. Y.; Yang, W. X.; Wu, Y. Y.; Xing, Z. W.; Jiang, M.; Lu, S. L. Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene. Chin. Phys. B 2021, 30, 078506.

[27]

Jackman, S. L.; Regehr, W. G. The mechanisms and functions of synaptic facilitation. Neuron 2017, 94, 447–464.

[28]

Huang, W.; Xia, X. W.; Zhu, C.; Steichen, P.; Quan, W. D.; Mao, W. W.; Yang, J. P.; Chu, L.; Li, X. A. Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 2021, 13, 85.

[29]

Zhang, M. L.; Wu, J. B.; Belatreche, A.; Pan, Z. H.; Xie, X. R.; Chua, Y. S.; Li, G. Q.; Qu, H.; Li, H. Z. Supervised learning in spiking neural networks with synaptic delay-weight plasticity. Neurocomputing 2020, 409, 103–118.

[30]

Zhang, S.; Yang, L.; Jiang, C. P.; Sun, L.; Guo, K. X.; Han, H.; Xu, W. T. Digitally aligned ZnO nanowire array based synaptic transistors with intrinsically controlled plasticity for short-term computation and long-term memory. Nanoscale 2021, 13, 19190–19199.

[31]

Yan, X. B.; Wang, J. J.; Zhao, M. L.; Li, X. Y.; Wang, H.; Zhang, L.; Lu, C.; Ren, D. L. Artificial electronic synapse characteristics of a Ta/Ta2O5−x/Al2O3/InGaZnO4 memristor device on flexible stainless steel substrate. Appl. Phys. Lett. 2018, 113, 013503.

[32]

Hofer, S. B.; Mrsic-Flogel, T. D.; Bonhoeffer, T.; Hübener, M. Experience leaves a lasting structural trace in cortical circuits. Nature 2009, 457, 313–317.

[33]

Ge, C.; Liu, C. X.; Zhou, Q. L.; Zhang, Q. H.; Du, J. Y.; Li, J. K.; Wang, C.; Gu, L.; Yang, G. Z.; Jin, K. J. A ferrite synaptic transistor with topotactic transformation. Adv. Mater. 2019, 31, 1900379.

[34]

Vignoud, G.; Robert, P. Spontaneous dynamics of synaptic weights in stochastic models with pair-based spike-timing-dependent plasticity. Phys. Rev. E 2022, 105, 054405.

[35]

Qi, H. X.; Wu, Y. Synaptic plasticity of TiO2 nanowire transistor. Microelectron. Int. 2020, 37, 125–130.

[36]

Chen, Y. H.; Yu, H. Y.; Gong, J. D.; Ma, M. X.; Han, H.; Wei, H. H.; Xu, W. T. Artificial synapses based on nanomaterials. Nanotechnology 2019, 30, 012001.

[37]

Liu, L.; Cui, B. B.; Xu, W. L.; Ni, Y.; Zhang, S.; Xu, W. T. Highly aligned indium zinc oxide nanowire-based artificial synapses with low-energy consumption. J. Ind. Eng. Chem. 2020, 88, 111–116.

[38]

Liu, Y. H.; Zhu, L. Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater. 2015, 27, 5599–5604.

[39]

Shen, R.; Jiang, Y. F.; Li, X.; Tian, J. M.; Li, S.; Li, T.; Chen, Q. Artificial synapse based on an InAs nanowire field-effect transistor with ferroelectric polymer P(VDF-TrFE) passivation. ACS Appl. Electron. Mater. 2022, 4, 5008–5016.

[40]

Meng, Y.; Li, F. Z.; Lan, C. Y.; Bu, X. M.; Kang, X. L.; Wei, R. J.; Yip, S.; Li, D. P.; Wang, F.; Takahashi, T. et al. Artificial visual systems enabled by quasi-two-dimensional electron gases in oxide superlattice nanowires. Sci. Adv. 2020, 6, eabc6389.

[41]

Zha, C. F.; Luo, W.; Zhang, X.; Yan, X.; Ren, X. M. Low-consumption synaptic devices based on gate-all-around inas nanowire field-effect transistors. Nanoscale Res. Lett. 2022, 17, 101.

[42]

Schäffler, F.; Abstreiter, G. Formation of metal-semiconductor interfaces: From the submonolayer regime to the real Schottky barrier. J. Vac. Sci. Technol. B: Microelectron. Process. Phenom. 1985, 3, 1184–1189.

[43]

Knoch, J.; Sun, B. Sub-linear current voltage characteristics of Schottky-barrier field-effect transistors. IEEE Trans. Electron Devices 2022, 69, 2243–2247.

[44]

Prozheeva, V.; Makkonen, I.; Li, H. R.; Keller, S.; Mishra, U. K.; Tuomisto, F. Interfacial N vacancies in GaN/(Al, Ga)N/GaN heterostructures. Phys. Rev. Appl. 2020, 13, 044034.

[45]

Li, R. Z.; Dong, Y. B.; Qian, F. S.; Xie, Y. Y.; Chen, X.; Zhang, Q. M.; Yue, Z. J.; Gu, M. CsPbBr3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning. PhotoniX 2023, 4, 4.

[46]

He, K.; Liu, Y. Q.; Yu, J. C.; Guo, X. T.; Wang, M.; Zhang, L. D.; Wan, C. J.; Wang, T.; Zhou, C. J.; Chen, X. D. Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano 2022, 16, 9691–9700.

[47]

Song, Y. T.; Wu, X.; Wang, W. J.; Yuan, W. X.; Chen, X. L. Thermal stability and electronic specific heat of GaN. J. Alloys Compd. 2004, 370, 65–68.

[48]

Zhuang, D.; Edgar, J. H. Wet etching of GaN, AlN, and SiC: A review. Mater. Sci. Eng.: R: Rep. 2005, 48, 1–46.

[49]

Zorn, C.; Kaminski, N. Temperature–humidity–bias testing on insulated-gate bipolartransistor modules—Failure modes and acceleration due to high voltage. IET Power Electron. 2015, 8, 2329–2335.

[50]

Chakraborty, S.; Kim, T. W. Investigation of mean-time-to-failure measurements from AlGaN/GaN high-electron-mobility transistors using eyring model. Electronics 2021, 10, 3052.

[51]

Pecht, M. G.; Shukla, A. A.; Kelkar, N.; Pecht, J. Criteria for the assessment of reliability models. IEEE Trans. Compon., Packag., Manuf. Technol.: Part B 1997, 20, 229–234.

[52]

Xie, P. S.; Huang, Y. L.; Wang, W.; Meng, Y.; Lai, Z. X.; Wang, F.; Yip, S. P.; Bu, X. M.; Wang, W. J.; Li, D. J. et al. Ferroelectric P(VDF-TrFE) wrapped InGaAs nanowires for ultralow-power artificial synapses. Nano Energy 2022, 91, 106654.

Nano Research
Pages 1933-1941
Cite this article:
Gu X, Zhou M, Zhao Y, et al. Realize ultralow-energy-consumption photo-synaptic device based on a single (Al,Ga)N nanowire for neuromorphic computing. Nano Research, 2024, 17(3): 1933-1941. https://doi.org/10.1007/s12274-023-6069-0
Topics:

764

Views

8

Crossref

7

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 02 June 2023
Revised: 28 July 2023
Accepted: 07 August 2023
Published: 31 August 2023
© Tsinghua University Press 2023
Return