AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An advanced 2D/3D g-C3N4/TiO2@MnO2 multifunctional membrane for sunlight-driven sustainable water purification

Fan Yu1Chunjia Luo1,2( )Xiaohan Niu1Min Chao1Pengfei Zhang3( )Luke Yan1( )
Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang’an University, Xi’an 710064, China
Key Laboratory of Road Construction Technology and Equipment, MOE, Chang’an University, Xi’an 710064, China
School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710064, China
Show Author Information

Graphical Abstract

An advanced two-/three-dimensional (2D/3D) graphitic carbon nitride (g-C3N4)-C3N4/TiO2@MnO2 membrane with both oil-in-water (O/W) emulsions separation, photocatalytic degradation, and self-cleaning capabilities was constructed by intercalating 3D nanostructures into g-C3N4 nanosheets. This work overcomes the barriers of dense stacking and single function of 2D g-C3N4 membranes and shows promising application in complex wastewater purification.

Abstract

Graphitic carbon nitride (g-C3N4) nanosheets have attracted widespread interest in the construction of advanced separation membranes. However, dense stacking and a single functionality have limited the membrane development. Here, an advanced two-/three-dimensional (2D/3D) g-C3N4/TiO2@MnO2 membrane is constructed by intercalating 3D TiO2@MnO2 nanostructures into g-C3N4 nanosheets. The 3D flower-like nanostructures broaden the transport channels of the composite membrane. The membrane can effectively separate five oil-in-water (O/W) emulsions, with a maximum flux of 3265.67 ± 15.01 L·m−2·h−1·bar−1 and a maximum efficiency of 99.69% ± 0.45% for toluene-in-water emulsion (T/W). Meanwhile, the TiO2@MnO2 acts as an excellent electron acceptor and provides positive spatial separation of electrons–holes (e–h+). The formation of 2D/3D heterojunctions allows the material with wider light absorption and smaller bandgap (2.10 eV). These photoelectric properties give the membrane good degradation of three different pollutants, with about 100% degradation for methylene blue (MB) and malachite green (MG). The photocatalytic antibacterial efficiency of the membrane is also about 100%. After cyclic experiment, the membrane maintains its original separation and photocatalytic capabilities. The remarkable multifunctional and self-cleaning properties of the g-C3N4 based membrane represent its potential value for complex wastewater treatment.

Electronic Supplementary Material

Download File(s)
12274_2023_6071_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Peydayesh, M.; Mezzenga, R. Protein nanofibrils for next generation sustainable water purification. Nat. Commun. 2021, 12, 3248.

[2]

Zhang, L. Y.; He, Y.; Luo, P. Y.; Ma, L.; Li, S. S.; Nie, Y. L.; Zhong, F.; Wang, Y. Q.; Chen, L. Photocatalytic GO/M88A “interceptor plate” assembled nanofibrous membrane with photo-Fenton self-cleaning performance for oil/water emulsion separation. Chem. Eng. J. 2022, 427, 130948.

[3]

Yan, L. L.; Yang, X. B.; Zeng, H. Z.; Zhao, Y. Y.; Li, Y. X.; He, X. Z.; Ma, J.; Shao, L. Nanocomposite hydrogel engineered hierarchical membranes for efficient oil/water separation and heavy metal removal. J. Memb. Sci. 2023, 668, 121243.

[4]

Liu, W.; Li, Y.; Li, R. J.; Xu, H.; Lu, X. L.; Dong, W. B.; Zhang, Z.; Wang, Y. Constructing 2D ultrathin graphene oxide membranes with supramolecular-assembled nano-adhesives for enhancing water stability. Nano Res. 2023, 16, 8505–8511.

[5]

Zheng, S. Y.; Chen, H. S.; Tong, X.; Wang, Z. W.; Crittenden, J. C.; Huang, M. H. Integration of a photo-Fenton reaction and a membrane filtration using CS/PAN@FeOOH/g-C3N4 electrospun nanofibers: Synthesis, characterization, self-cleaning performance and mechanism. Appl. Catal. B Environ. 2021, 281, 119519.

[6]

Junaidi, N. F. D.; Othman, N. H.; Fuzil, N. S.; Shayuti, M. S. M.; Alias, N. H.; Shahruddin, M. Z.; Marpani, F.; Lau, W. J.; Ismail, A. F.; Aba, N. D. Recent development of graphene oxide-based membranes for oil-water separation: A review. Sep. Purif. Technol. 2021, 258, 118000.

[7]

Yang, Y.; Guo, Z. G.; Liu, W. M. Special superwetting materials from bioinspired to intelligent surface for on-demand oil/water separation: A comprehensive review. Small 2022, 18, 2204624.

[8]

Zhang, Y. M.; Chen, X. S.; Luo, C. J.; Gu, J. C.; Li, M. R.; Chao, M.; Chen, X.; Chen, T.; Yan, L. K.; Wang, X. Column-to-beam structure house inspired MXene-based integrated membrane with stable interlayer spacing for water purification. Adv. Funct. Mater. 2022, 32, 2111660.

[9]

Yao, Y. Y.; Wang, C. H.; Na, J.; Hossain, M. S. A.; Yan, X.; Zhang, H.; Amin, M. A.; Qi, J. W.; Yamauchi, Y.; Li, J. Macroscopic MOF architectures: Effective strategies for practical application in water treatment. Small 2022, 18, 2104387.

[10]

Du, J. C.; Sun, Q.; He, W.; Liu, L. H.; Song, Z. Y.; Yao, A. Y.; Ma, J.; Cao, D.; Hassan, S. U.; Guan, J. et al. A 2D soft covalent organic framework membrane prepared via a molecular bridge. Adv. Mater. 2023, 35, 2300975.

[11]

Liu, Y.; Zhao, Y. C.; Zhang, X. B.; Huang, X. L.; Liao, W. C.; Zhao, Y. T. MoS2-based membranes in water treatment and purification. Chem. Eng. J. 2021, 422, 130082.

[12]

Zhang, H. R.; Mane, A. U.; Yang, X. B.; Xia, Z. J.; Barry, E. F.; Luo, J. Q.; Wan, Y. H.; Elam, J. W.; Darling, S. B. Visible-light-activated photocatalytic films toward self-cleaning membranes. Adv. Funct. Mater. 2020, 30, 2002847.

[13]

Pan, Y. P.; Shi, Z. Z.; Li, J.; Zhang, Z.; Li. X. W.; Zhuang, Z. L.; Mo, Y. Y.; Liang, J. H.; Wang, Z. Q.; An, M.; Luo, Q. Z.; Chen, X. C. Graphene oxide laminates intercalated with Prussian blue nanocube as a photo-Fenton self-cleaning membrane for enhanced water purification. J. Memb. Sci. 2023, 672, 121465.

[14]

Zhao, Y.; Gu, Y. N.; Liu, B.; Yan, Y. J.; Shan, C.; Guo, J.; Zhang, S. T.; Vecitis, C. D.; Gao, G. D. Pulsed hydraulic-pressure-responsive self-cleaning membrane. Nature 2022, 608, 69–73.

[15]

Gan, X. R.; Lei, D. Y.; Ye, R. Q.; Zhao, H. M.; Wong, K. Y. Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Res. 2021, 14, 2003–2022.

[16]

Ling, G. Z. S.; Ng, S. F.; Ong, W. J. Tailor-engineered 2D cocatalysts: Harnessing electron–hole redox center of 2D g-C3N4 photocatalysts toward solar-to-chemical conversion and environmental purification. Adv. Funct. Mater. 2022, 32, 2111875.

[17]

Ji, L. T.; Yan, L. K.; Chao, M.; Li, M. R.; Gu, J. C.; Lei, M.; Zhang, Y. M.; Wang, X.; Xia, J. Y.; Chen, T. Y. et al. Sphagnum inspired g-C3N4 nano/microspheres with smaller bandgap in heterojunction membranes for sunlight-driven water purification. Small 2021, 17, 2007122.

[18]

Liu, Y. N.; Su, Y. L.; Guan, J. Y.; Cao, J. L.; Zhang, R. N.; He, M. R.; Gao, K.; Zhou, L. J.; Jiang, Z. Y. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil–water separation. Adv. Funct. Mater. 2018, 28, 1706545.

[19]

Zeng, G. Y.; He, Z. Z.; Wan, T.; Wang, T. R.; Yang, Z. M.; Liu, Y. C.; Lin, Q. Q.; Wang, Y. H.; Sengupta, A.; Pu, S. Y. A self-cleaning photocatalytic composite membrane based on g-C3N4@MXene nanosheets for the removal of dyes and antibiotics from wastewater. Sep. Purif. Technol. 2022, 292, 121037.

[20]

Zhong, Q.; Li, Y.; Zhang, G. K. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021, 409, 128099.

[21]

Wang, Y. J.; Li, L. B.; Wei, Y. Y.; Xue, J.; Chen, H.; Ding, L.; Caro, J.; Wang, H. H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew. Chem., Int. Ed. 2017, 56, 8974–8980.

[22]

Li, R.; Ren, Y. L.; Zhao, P. X.; Wang, J.; Liu, J. D.; Zhang, Y. T. Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. J. Hazard. Mater. 2019, 365, 606–614.

[23]

Imoto, S.; Nakagawa, K.; Hu, C.; Yoshioka, T.; Shintani, T.; Matsuoka, A.; Kamio, E.; Tachikawa, T.; Tsang, S. C. E.; Matsuyama, H. HNb3O8/g-C3N4 nanosheet composite membranes with two-dimensional heterostructured nanochannels achieve enhanced water permeance and photocatalytic activity. Chem. Eng. J. 2022, 442, 136254.

[24]

Lin, Q. Q.; Zeng, G. Y.; Yan, G. L.; Luo, J. Q.; Cheng, X. J.; Zhao, Z. Y.; Li, H. Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: Oil/water separation and dyes removal. Chem. Eng. J. 2022, 427, 131668.

[25]

Shi, Y. Z.; Yang, D. Z.; Li, Y.; Qu, J.; Yu, Z. Z. Fabrication of PAN@TiO2/Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation. Appl. Surf. Sci. 2017, 426, 622–629.

[26]

Wang, N.; Li, X. F.; Yang, J.; Shen, Y. X.; Qu, J.; Hong, S.; Yu, Z. Z. Fabrication of a compressible PU@RGO@MnO2 hybrid sponge for efficient removal of methylene blue with an excellent recyclability. RSC Adv. 2016, 6, 88897–88903.

[27]

Xiao, Y. T.; Tian, G. H.; Li, W.; Xie, Y.; Jiang, B. J.; Tian, C. G.; Zhao, D. Y.; Fu, H. G. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. J. Am. Chem. Soc. 2019, 141, 2508–2515.

[28]

Zhang, H.; He, J.; Wu, P.; Jiang, W. Facile synthesis of Z-scheme KBiO3/g-C3N4 Z-scheme heterojunction photocatalysts: Structure, performance, and mechanism. J. Environ. Chem. Eng. 2022, 10, 107804.

[29]

Yang, C.; Tan, Q. Y.; Li, Q.; Zhou, J. J.; Fan, J.; Li, B.; Sun, J.; Lv, K. L. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for highly efficient CO2 reduction photocatalyst: Dual effects of urea. Appl. Catal. B Environ. 2020, 268, 118738.

[30]

Zhang, S. L.; Ying, H. J.; Huang, P. F.; Yang, T. T.; Han, W. Q. Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives. Nano Res. 2022, 15, 2746–2755.

[31]

Xiu, L.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Qiu, J. S. Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 8017–8028.

[32]

Lei, Z.; Li, Z. Y.; Guo, M. L.; Li, P.; Da, T.; Wang, S. C.; Wu, Y. P.; He, Y.; Chen, J. Y. MnO2−x nanowires on carbon cloth based superamphiphilic and under-oil superhydrophilic filtration membrane for oil/water separation with robust anti-oil fouling performance. Compos. B Eng. 2020, 199, 108286.

[33]

Hu, Q.; Liu, X. F.; Zhu, B.; Li, G. M.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Redox route to ultrathin metal sulfides nanosheet arrays-anchored MnO2 nanoparticles as self-supported electrocatalysts for efficient water splitting. J. Power Sources 2018, 398, 159–166.

[34]

Wu, Z. X.; Yang, P. F.; Li, Q. C.; Xiao, W. P.; Li, Z. J.; Xu, G. R.; Liu, F. S.; Jia, B. H.; Ma, T. Y.; Feng, S. H. et al. Microwave synthesis of Pt clusters on black TiO2 with abundant oxygen vacancies for efficient acidic electrocatalytic hydrogen evolution. Angew. Chem. 2023, 135, e202300406.

[35]

Nguyen, D. N.; Phu, T. K. C.; Kim, J.; Hong, W. T.; Kim, J. S.; Roh, S. H.; Park, H. S.; Chung, C. H.; Choe, W. S.; Shin, H. et al. Interfacial strain-modulated nanospherical Ni2P by heteronuclei-mediated growth on Ti3C2Tx MXene for efficient hydrogen evolution. Small 2022, 18, 2204797.

[36]

Li, Z. L.; Li, Z. Q.; Zuo, C. L.; Fang, X. S. Application of nanostructured TiO2 in UV photodetectors: A review. Adv. Mater. 2022, 34, 2109083.

[37]

Gao, F. Y.; Tang, X. L.; Yi, H. H.; Chu, C.; Li, N.; Li, J. Y.; Zhao, S. Z. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts. Chem. Eng. J. 2017, 322, 525–537.

[38]

Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Ultrasensitive 2D/3D heterojunction multicolor photodetectors: A synergy of laterally and vertically aligned 2D layered materials. ACS Appl. Mater. Interfaces 2018, 10, 38166–38172.

[39]
Khan, A. R.; Awan, S. K.; Husnain, S. M.; Abbas, N.; Anjum, D. H.; Abbas, N.; Benaissa, M.; Mirza, C. R.; Mujtaba-Ul-Hassan, S.; Shahzad, F. 3D flower like δ-MnO2/MXene nano-hybrids for the removal of hexavalent Cr from wastewater. Ceram. Int. 2021, 47, 25951–25958.
[40]

Ahmed, I.; Hasan, Z.; Lee, G.; Lee, H. J.; Jhung, S. H. Contribution of hydrogen bonding to liquid-phase adsorptive removal of hazardous organics with metal-organic framework-based materials. Chem. Eng. J. 2022, 430, 132596.

[41]

Yu, T.; Xie, T.; Zhou, W.; Zhang, Y. Z.; Chen, Y. L.; Shao, B. Y.; Guo, W. Q.; Tan, X. Fumaric acid assistant band structure tunable nitrogen defective g-C3N4 fabrication for enhanced photocatalytic hydrogen evolution. ACS Sustainable Chem. Eng. 2021, 9, 7529–7540.

[42]

Shi, M. J.; Wang, B.; Chen, C.; Lang, J. W.; Yan, C.; Yan, X. B. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 24635–24644.

[43]

Tu, S. B.; Zhao, X. X.; Cheng, M. R.; Sun, P. F.; He, Y. W.; Xu, Y. H. Uniform mesoporous MnO2 nanospheres as a surface chemical adsorption and physical confinement polysulfide mediator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 10624–10630.

[44]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[45]

Wang, D.; He, Y. N.; Chen, Y.; Yang, F.; He, Z. Q.; Zeng, T.; Lu, X. H.; Wang, L. Z.; Song, S.; Ma, J. Electron transfer enhancing the Mn(II)/Mn(III) cycle in MnO/CN towards catalytic ozonation of atrazine via a synergistic effect between MnO and CN. Water Res. 2023, 230, 119574.

[46]

Zou, J. C.; Lin, Y.; Wu, S. H.; Zhong, Y. Y.; Yang, C. P. Molybdenum dioxide nanoparticles anchored on nitrogen-doped carbon nanotubes as oxidative desulfurization catalysts: Role of electron transfer in activity and reusability. Adv. Funct. Mater. 2021, 31, 2100442.

[47]

Ding, Y. W.; Yu, C.; Chang, J. W.; Yao, C.; Yu, J. H.; Guo, W.; Qiu, J. S. Effective fixation of carbon in g-C3N4 enabled by Mg-induced selective reconstruction. Small 2020, 16, 1907164.

[48]

Li, F. Y.; Benetti, D.; Zhang, M.; Feng, J. H.; Wei, Q.; Rosei, F. Modulating the 0D/2D interface of hybrid semiconductors for enhanced photoelectrochemical performances. Small Methods 2021, 5, 2100109.

[49]

Cai, Y. H.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. A self-cleaning heterostructured membrane for efficient oil-in-water emulsion separation with stable flux. Adv. Mater. 2020, 32, 2001265.

[50]

Liang, B.; Zhang, G. Y.; Zhong, Z. X.; Sato, T.; Hozumi, A.; Su, Z. H. Substrate-independent polyzwitterionic coating for oil/water separation membranes. Chem. Eng. J. 2019, 362, 126–135.

[51]

Li, Y. X.; Yang, X. B.; Wen, Y. J.; Zhao, Y. Y.; Yan, L. L.; Han, G.; Shao, L. Progress reports of mineralized membranes: Engineering strategies and multifunctional applications. Sep. Purif. Technol. 2023, 304, 122379.

[52]

Zhang, X. L.; Yuan, N.; Li, Y.; Han, L. J.; Wang, Q. B. Fabrication of new MIL-53(Fe)@TiO2 visible-light responsive adsorptive photocatalysts for efficient elimination of tetracycline. Chem. Eng. J. 2022, 428, 131077.

[53]

Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.

[54]

Feng, Y. Y.; Luo, C. J.; Chen, X. S.; Gu, J. C.; Zhang, Y. M.; Chao, M.; Li, M. R.; Chen, T.; Chen, X.; Wang, X. et al. Shell inspired heterogeneous membrane with smaller bandgap toward sunlight-activated sustainable water purification. Chem. Eng. J. 2022, 440, 135910.

[55]

Li, J. L.; Zhang, Q.; Zou, Y. Z.; Cao, Y. H.; Cui, W.; Dong, F.; Zhou, Y. Ti3C2 MXene modified g-C3N4 with enhanced visible-light photocatalytic performance for NO purification. J. Colloid Interface Sci. 2020, 575, 443–451.

[56]

Wu, J. Y.; Cha, H.; Du, T.; Dong, Y. F.; Xu, W. D.; Lin, C. T.; Durrant, J. R. A comparison of charge carrier dynamics in organic and perovskite solar cells. Adv. Mater. 2022, 34, 2101833.

[57]

Pan, Y. P.; Hu, X.; Bao, M. T.; Li, F. S.; Li, Y. M.; Lu, J. R. Fabrication of MIL-Fe(53)/modified g-C3N4 photocatalyst synergy H2O2 for degradation of tetracycline. Sep. Purif. Technol. 2021, 279, 119661.

[58]

Choong, C. E.; Park, C. M.; Chang, Y. Y.; Yang, J. K.; Kim, J. R.; Oh, S. E.; Jeon, B. H.; Choi, E. H.; Yoon, Y.; Jang, M. Interfacial coupling perovskite CeFeO3 on layered graphitic carbon nitride as a multifunctional Z-scheme photocatalyst for boosting nitrogen fixation and organic pollutants demineralization. Chem. Eng. J. 2022, 427, 131406.

[59]

He, B. W.; Wang, Z. L.; Xiao, P.; Chen, T.; Yu, J. G.; Zhang, L. Y. Cooperative coupling of H2O2 production and organic synthesis over a floatable polystyrene-sphere-supported TiO2/Bi2O3 S-scheme photocatalyst. Adv. Mater. 2022, 34, 2203225.

[60]

Jiao, J. C.; Sun, H.; Si, C.; Xu, J. B.; Zhang, T.; Han, Q. X. Photocatalytic multielectron reduction of nitroarenes to anilines by utilizing an electron-storable polyoxometalate-based metal-organic framework. ACS Appl. Mater. Interfaces 2022, 14, 16386–16393.

[61]

Krishnan, S.; Shriwastav, A. Application of TiO2 nanoparticles sensitized with natural chlorophyll pigments as catalyst for visible light photocatalytic degradation of methylene blue. J. Environ. Chem. Eng. 2021, 9, 104699.

[62]

Zhu, Y.; Xu, J.; Wang, Y. M.; Chen, C.; Gu, H. C.; Chai, Y. M.; Wang, Y. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res. 2020, 13, 389–400.

[63]

Yang, X. X.; Ye, Y. L.; Sun, J. D.; Li, Z. J.; Ping, J. F.; Sun, X. L. Recent advances in g-C3N4-based photocatalysts for pollutant degradation and bacterial disinfection: Design strategies, mechanisms, and applications. Small 2022, 18, 2105089.

[64]

Chen, X. P.; Li, Y. M.; Yang, Y. S.; Zhang, D.; Guan, Y. H.; Bao, M. T.; Wang, Z. N. A super-hydrophobic and antibiofouling membrane constructed from carbon sphere-welded MnO2 nanowires for ultra-fast separation of emulsion. J. Memb. Sci. 2022, 653, 120514.

[65]

Zhang, C.; Qin, D. Y.; Zhou, Y.; Qin, F. Z.; Wang, H.; Wang, W. J.; Yang, Y.; Zeng, G. M. Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: Morphology and defect evolution. Appl. Catal. B Environ. 2022, 303, 120904.

[66]

Tang, J. L.; Wang, J. J.; Tang, L.; Feng, C. Y.; Zhu, X.; Yi, Y. Y.; Feng, H. P.; Yu, J. F.; Ren, X. Y. Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation. Chem. Eng. J. 2022, 430, 132669.

[67]

Liu, Z. X.; Liu, Y. D.; Sun, X. B.; Ji, H. D.; Liu, W.; Cai, Z. Q. Construction of Z-scheme Ag/AgVO3/carbon-rich g-C3N4 heterojunction for enhanced photocatalytic degradation of sulfamethiadiazole: DFT calculation and mechanism study. Chem. Eng. J. 2022, 433, 133604.

[68]

Zhang, Y. Y.; Chen, P.; Wang, Q. Y.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J.; Zhang, Q. High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure. Adv. Energy Mater. 2021, 11, 2101712.

[69]

Wen, Y. J.; Yang, X. B.; Li, Y. X.; Yan, L. L.; Zhao, Y. Y.; Shao, L. Progress reports of metal-phenolic network engineered membranes for water treatment. Sep. Purif. Technol. 2023, 320, 124225.

Nano Research
Pages 2368-2380
Cite this article:
Yu F, Luo C, Niu X, et al. An advanced 2D/3D g-C3N4/TiO2@MnO2 multifunctional membrane for sunlight-driven sustainable water purification. Nano Research, 2024, 17(4): 2368-2380. https://doi.org/10.1007/s12274-023-6071-6
Topics:

1028

Views

12

Crossref

13

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 23 June 2023
Revised: 06 August 2023
Accepted: 07 August 2023
Published: 12 September 2023
© Tsinghua University Press 2023
Return