AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface iodine and pyrenyl-graphdiyne co-modified Bi catalysts for highly efficient CO2 electroreduction in acidic electrolyte

Min Zhang,§Juan Wang,§Xin RongXiu-Li Lu( )Tong-Bu Lu( )
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

§ Min Zhang and Juan Wang contributed equally to this work.

Show Author Information

Graphical Abstract

The co-modification of iodine and pyrenyl-graphdiyne (PGDY) on the active Bi surface of PGDY@I-BOCR have greatly enhanced the activity and stability for electrocatalytic CO2-to-formate conversion in acidic electrolyte.

Abstract

CO2 electroreduction to formic acid/formate would contribute to alleviating the energy and climate crisis. This work reports a Bi-based catalyst derived from the in-situ electroreduction of Bi2O2CO3 modified with iodine and pyrenyl-graphdiyne (PGDY) on the surface for efficient electroreduction of CO2 in acidic electrolyte, with a high partial current density of 98.71 mA·cm−2 and high Faradaic efficiency (FE) > 90% over the potential range from −1.2 to −1.5 V vs. reversible hydrogen electrode (RHE), as well as the long-term operational stability over 240 h without degradation in H-type cell. Experimental results and density function theory calculations show that the synergistic effect of surface iodine and PGDY is responsible for this active and extremely stable process of CO2 electroreduction via lowering the energy barriers for formation of *OCHO intermediate, suppressing the competitive HER by enhancing the concentration of both K+ and CO2 at reaction interface, as well as preventing the dissolution and re-deposition of active Bi atoms on surface during catalytic reaction. This work provides new insight into designing highly active and stable electrocatalysts for CO2 reduction.

Electronic Supplementary Material

Download File(s)
12274_2023_6073_MOESM1_ESM.pdf (4.4 MB)

References

[1]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K. R.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[2]

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

[3]

Yang, Y.; Louisia, S.; Yu, S.; Jin, J. B.; Roh, I.; Chen, C. B.; Guzman, M. V. F.; Feijóo, J.; Chen, P. C.; Wang, H. S. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023, 614, 262–269.

[4]

Li, L.; Ozden, A.; Guo, S. Y.; de Arquer, F. P. G.; Wang, C. H.; Zhang, M. Z.; Zhang, J.; Jiang, H. Y.; Wang, W.; Dong, H. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 2021, 12, 5223.

[5]

Li, X. D.; Wang, S. M.; Li, L.; Zu, X. L.; Sun, Y. F.; Xie, Y. Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction. Acc. Chem. Res. 2020, 53, 2964–2974.

[6]

Liu, H. F.; Xia, J.; Zhang, N.; Cheng, H.; Bi, W. T.; Zu, X. L.; Chu, W. S.; Wu, H. A.; Wu, C. Z.; Xie, Y. Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat. Catal. 2021, 4, 202–211.

[7]

Gu, J.; Liu, S.; Ni, W. Y.; Ren, W. H.; Haussener, S.; Hu, X. L. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 2022, 5, 268–276.

[8]

Li, L.; Liu, Z. Y.; Yu, X. H.; Zhong, M. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem., Int. Ed. 2023, 62, e202300226.

[9]

Huang, J. E.; Li, F. W.; Ozden, A.; Rasouli, A. S.; de Arquer, F. P. G.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.

[10]

Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

[11]
Jiang, X. L.; Lin, L.; Rong, Y. W.; Li, R. T.; Jiang, Q. K.; Yang, Y. Y.; Gao, D. F. Boosting CO2 electroreduction to formate via bismuth oxide clusters. Nano Res., in press, https://doi.org/10.1007/s12274-022-5073-0.
[12]

Wang, T.; Chen, J. D.; Ren, X. Y.; Zhang, J. C.; Ding, J.; Liu, Y. H.; Lim, K. H.; Wang, J. H.; Li, X. N.; Yang, H. B. et al. Halogen-incorporated Sn catalysts for selective electrochemical CO2 reduction to formate. Angew. Chem., Int. Ed. 2023, 62, e202211174.

[13]

Jiang, Y. L.; Shan, J. Q.; Wang, P. T.; Huang, L. S.; Zheng, Y.; Qiao, S. Z. Stabilizing oxidation state of SnO2 for highly selective CO2 electroreduction to formate at large current densities. ACS Catal. 2023, 13, 3101–3108.

[14]

Lin, L.; He, X. Y.; Zhang, X. G.; Ma, W. C.; Zhang, B.; Wei, D. Y.; Xie, S. J.; Zhang, Q. H.; Yi, X. D.; Wang, Y. A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate. Angew. Chem., Int. Ed. 2023, 62, e202214959.

[15]

Li, Z. Q.; Sun, B.; Xiao, D. F.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Wang, P.; Dai, Y.; Cheng, H. F.; Huang, B. B. Electron-rich Bi nanosheets promote CO2· formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202217569.

[16]

Yang, C.; Chai, J. X.; Wang, Z.; Xing, Y. L.; Peng, J.; Yan, Q. Y. Recent progress on bismuth-based nanomaterials for electrocatalytic carbon dioxide reduction. Chem. Res. Chin. Univ. 2020, 36, 410–419.

[17]

Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.

[18]

Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.

[19]

Tang, S. F.; Lu, X. L.; Zhang, C.; Wei, Z. W.; Si, R.; Lu, T. B. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate. Sci. Bull. 2021, 66, 1533–1541.

[20]

Feng, X. Z.; Zou, H. Y.; Zheng, R. J.; Wei, W. F.; Wang, R. H.; Zou, W. S.; Lim, G.; Hong, J.; Duan, L. L.; Chen, H. Bi2O3/BiO2 nanoheterojunction for highly efficient electrocatalytic CO2 reduction to formate. Nano Lett. 2022, 22, 1656–1664.

[21]

Wang, D.; Liu, C. W.; Zhang, Y. N.; Wang, Y. Y.; Wang, Z. L.; Ding, D.; Cui, Y.; Zhu, X. M.; Pan, C. S.; Lou, Y. et al. CO2 electroreduction to formate at a partial current density up to 590 mA·mg−1 via micrometer-scale lateral structuring of bismuth nanosheets. Small 2021, 17, 2100602.

[22]

Li, Y. Z.; Chen, J. L.; Chen, S.; Liao, X. L.; Zhao, T. T.; Cheng, F. Y.; Wang, H. In situ confined growth of bismuth nanoribbons with active and robust edge sites for boosted CO2 electroreduction. ACS Energy Lett. 2022, 7, 1454–1461.

[23]

Chen, X.; Chen, H. Y.; Zhou, W.; Zhang, Q. Q.; Yang, Z. S.; Li, Z.; Yang, F.; Wang, D. F.; Ye, J. H.; Liu, L. Q. Boron dopant induced electron-rich bismuth for electrochemical CO2 reduction with high solar energy conversion efficiency. Small 2021, 17, 2101128.

[24]

Xu, J. Q.; Yang, S. H.; Ji, L.; Mao, J. W.; Zhang, W.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Yang, C. K.; Chen, H. et al. High current CO2 reduction realized by edge/defect-rich bismuth nanosheets. Nano Res. 2023, 16, 53–61.

[25]

Lv, L.; Lu, R. H.; Zhu, J. X.; Yu, R. H.; Zhang, W.; Cui, E. H.; Chen, X. B.; Dai, Y. H.; Cui, L. M.; Li, J. et al. Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2023, 62, e202303117.

[26]

Li, N. H.; Yan, P.; Tang, Y. H.; Wang, J. H.; Yu, X. Y.; Wu, H. B. In-situ formation of ligand-stabilized bismuth nanosheets for efficient CO2 conversion. Appl. Catal. B: Environ. 2021, 297, 120481.

[27]

Li, M. T.; Wang, H. J.; Zhang, C.; Chang, Y. B.; Li, S. J.; Zhang, W.; Lu, T. B. Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst. Sci. China Chem. 2020, 63, 1040–1045.

[28]

Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

[29]

Lin, C. W.; Zhu, X. J.; Feng, J.; Wu, C. Z.; Hu, S. L.; Peng, J.; Guo, Y. Q.; Peng, L. L.; Zhao, J. Y.; Huang, J. L. et al. Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 2013, 135, 5144–5151.

[30]

Luo, Y. D.; Zheng, A. F.; Li, J. D.; Han, Y.; Xue, M. S.; Zhang, L. S.; Yin, Z. Z.; Xie, C.; Chen, Z.; Ji, L. et al. Integrated adsorption and photodegradation of tetracycline by bismuth oxycarbonate/biochar nanocomposites. Chem. Eng. J. 2023, 457, 141228.

[31]

Chang, S.; Xuan, Y. M.; Duan, J. J.; Zhang, K. High-performance electroreduction CO2 to formate at Bi/nafion interface. Appl. Catal. B: Environ. 2022, 306, 121135.

[32]

Yao, D. Z.; Tang, C.; Li, L. Q.; Xia, B. Q.; Vasileff, A.; Jin, H. Y.; Zhang, Y. Z.; Qiao, S. Z. In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction. Adv. Energy Mater. 2020, 10, 2001289.

[33]

Qiao, Y.; Lai, W. C.; Huang, K.; Yu, T. T.; Wang, Q. Y.; Gao, L.; Yang, Z. L.; Ma, Z. S.; Sun, T. L.; Liu, M. et al. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid. ACS Catal. 2022, 12, 2357–2364.

[34]

Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem., Int. Ed. 2021, 60, 12554–12559.

[35]

Hao, L.; Kang, L.; Huang, H. W.; Ye, L. Q.; Han, K. L.; Yang, S. Q.; Yu, H. J.; Batmunkh, M.; Zhang, Y. H.; Ma, T. Y. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, 1900546.

[36]

Yang, R. O.; Duan, J. Y.; Dong, P. P.; Wen, Q. L.; Wu, M.; Liu, Y. W.; Liu, Y.; Li, H. Q.; Zhai, T. Y. In situ halogen-ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products. Angew. Chem., Int. Ed. 2022, 61, e202116706.

[37]

Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

[38]

Yang, L. L.; Wang, H. J.; Wang, J.; Li, Y.; Zhang, W.; Lu, T. B. A graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity. J. Mater. Chem. A 2019, 7, 13142–13148.

[39]

Liu, C.; Zhang, C.; Lu, T. B. Graphdiyne anchored ultrafine Ag nanoparticles for highly efficient and solvent-free catalysis of CO2 cycloaddition. Mater. Chem. Front. 2021, 5, 6052–6060.

[40]

Duan, Y. X.; Zhou, Y. T.; Yu, Z.; Liu, D. X.; Wen, Z.; Yan, J. M.; Jiang, Q. Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem., Int. Ed. 2021, 60, 8798–8802.

[41]

Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.

[42]

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[43]

Ko, Y. J.; Kim, J. Y.; Lee, W. H.; Kim, M. G.; Seong, T. Y.; Park, J.; Jeong, Y.; Min, B. K.; Lee, W. S.; Lee, D. K. et al. Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate. Nat. Commun. 2022, 13, 2205.

[44]

Duan, J. Y.; Liu, T. Y.; Zhao, Y. H.; Yang, R. O.; Zhao, Y.; Wang, W. B.; Liu, Y. W.; Li, H. Q.; Li, Y. F.; Zhai, T. Y. Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nat. Commun. 2022, 13, 2039.

[45]

Wang, Y. T.; Li, Y. H.; Liu, J. Z.; Dong, C. X.; Xiao, C. Q.; Cheng, L.; Jiang, H. L.; Jiang, H.; Li, C. Z. BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel. Angew. Chem., Int. Ed. 2021, 60, 7681–7685.

[46]

Fan, J.; Zhao, X.; Mao, X. N.; Xu, J.; Han, N.; Yang, H.; Pan, B. B.; Li, Y. S.; Wang, L.; Li, Y. G. Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion. Adv. Mater. 2021, 33, 2100910.

[47]

Lee, J.; Liu, H. Z.; Chen, Y. F.; Li, W. Z. Bismuth nanosheets derived by in situ morphology transformation of bismuth oxides for selective electrochemical CO2 reduction to formate. ACS Appl. Mater. Interfaces 2022, 14, 14210–14217.

[48]

Liu, S. Q.; Shahini, E.; Gao, M. R.; Gong, L.; Sui, P. F.; Tang, T.; Zeng, H. B.; Luo, J. L. Bi2O3 nanosheets grown on carbon nanofiber with inherent hydrophobicity for high-performance CO2 electroreduction in a wide potential window. ACS Nano 2021, 15, 17757–17768.

[49]

Sui, P. F.; Gao, M. R.; Liu, S. B.; Xu, C. Y.; Zhu, M. N.; Luo, J. L. Carbon dioxide valorization via formate electrosynthesis in a wide potential window. Adv. Funct. Mater. 2022, 32, 2203794.

[50]

Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088.

[51]

Sheng, Y. W.; Guo, Y. Y.; Yu, H. J.; Deng, K.; Wang, Z. Q.; Li, X. N.; Wang, H. J.; Wang, L.; Xu, Y. Engineering under-coordinated active sites with tailored chemical microenvironments over mosaic bismuth nanosheets for selective CO2 electroreduction to formate. Small 2023, 19, 2207305.

[52]

Yang, X. F.; Wang, Q. R.; Chen, F. R.; Zang, H.; Liu, C. J.; Yu, N.; Geng, B. Y. In-situ electrochemical restructuring of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces enabling stabilization intermediates for high-performance CO2 electroreduction to formate. Nano Res. 2023, 16, 7974–7981.

[53]

Yang, X. X.; Deng, P. L.; Liu, D. Y.; Zhao, S.; Li, D.; Wu, H.; Ma, Y. M.; Xia, B. Y.; Li, M. T.; Xiao, C. H. et al. Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction. J. Mater. Chem. A 2020, 8, 2472–2480.

[54]

Zhou, Y. J.; Liang, Y. Q.; Fu, J. W.; Liu, K.; Chen, Q.; Wang, X. Q.; Li, H. M.; Zhu, L.; Hu, J. H.; Pan, H. et al. Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction. Nano Lett. 2022, 22, 1963–1970.

[55]

Li, Y.; Huo, C. Z.; Wang, H. J.; Ye, Z. X.; Luo, P. P.; Cao, X. X.; Lu, T. B. Coupling CO2 reduction with CH3OH oxidation for efficient electrosynthesis of formate on hierarchical bifunctional CuSn alloy. Nano Energy 2022, 98, 107277.

[56]

Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.

Nano Research
Pages 2381-2387
Cite this article:
Zhang M, Wang J, Rong X, et al. Surface iodine and pyrenyl-graphdiyne co-modified Bi catalysts for highly efficient CO2 electroreduction in acidic electrolyte. Nano Research, 2024, 17(4): 2381-2387. https://doi.org/10.1007/s12274-023-6073-4
Topics:

383

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 26 June 2023
Revised: 29 July 2023
Accepted: 07 August 2023
Published: 31 August 2023
© Tsinghua University Press 2023
Return