AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unraveling the role of NiSnPH@OOH/CC perovskite hydroxide for efficient electrocatalytic oxidation of methanol to formate

Jing Shao1Yusheng Fang1Xiaobing Wu1Muhammad Imran Abdullah2( )Youkun Tao2( )
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
School of Science, Harbin Institute of Technology, Shenzhen 518055, China
Show Author Information

Graphical Abstract

In situ surface reconstruction during cyclic voltammetry (CV) activation results in a highly active NiOOH amorphous layer on NiSn(OH)6 perovskite hydroxide (NiSnPH) through Sn leaching. This greatly enhances the electrocatalytic performance of NiSnPH@OOH/CC (CC = carbon cloth) for methanol oxidation reaction (MOR), effectively blocking methanol oxidation to CO2 without distorting the core structure.

Abstract

The sluggish kinetics of oxygen evolution reaction (OER) is the key tailback for hydrogen production from the water electrolysis. Masking OER with thermodynamically auspicious methanol oxidation reaction (MOR) can significantly boost the H2 and value-added products production. However, it is currently challenging to achieve a synergistic manipulation of product selectivity and performance for MOR electrocatalyst. Herein, we report NiSnPH@OOH/CC (CC = carbon cloth) perovskite hydroxide nanosphere as an efficient MOR electrocatalyst with high activity, stability, and selectivity towards methanol oxidation to formate. A surface amorphous layer of defect rich NiOOH was generated in operando by selective Sn leaching with stable perovskite hydroxide bulk structure, which mitigates the oxidative power and optimizes the local coordination environment of the active NiOOH sites. In situ Raman combined with electrochemical studies further confirm the key active species, NiOOH, generated in operando enhance the MOR and blocking the over oxidation of methanol to CO2. As a result, NiSnPH@OOH/CC effectively masks the OER and attains > 99% selectivity with 100% Faradic efficiency for methanol-to-formate. The results of this study show the advances of NiSnPH@OOH/CC as an efficient electrocatalyst for MOR and also suggest its potential applications for various small organic molecules oxidation.

Electronic Supplementary Material

Download File(s)
12274_2023_6078_MOESM1_ESM.pdf (11.6 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Wang, B.; Tang, C.; Wang, H. F.; Chen, X.; Cao, R.; Zhang, Q. A nanosized CoNi hydroxide@hydroxysulfide core–shell heterostructure for enhanced oxygen evolution. Adv. Mater. 2019, 31, 1805658.

[3]

Jin, K.; Maalouf, J. H.; Lazouski, N.; Corbin, N.; Yang, D. T.; Manthiram, K. Epoxidation of cyclooctene using water as the oxygen atom source at manganese oxide electrocatalysts. J. Am. Chem. Soc. 2019, 141, 6413–6418.

[4]

Mushiana, T.; Khan, M.; Abdullah, M. I.; Zhang, N.; Ma, M. M. Facile sol–gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea. Nano Res. 2022, 15, 5014–5023.

[5]

Abdullah, M. I.; Hameed, A.; Zhang, N.; Islam, H.; Ma, M. M.; Pollet, B. G. Ultrasonically surface-activated nickel foam as a highly efficient monolith electrode for the catalytic oxidation of methanol to formate. ACS Appl. Mater. Interfaces 2021, 13, 30603–30613.

[6]

Khan, M.; Hameed, A.; Samad, A.; Mushiana, T.; Abdullah, M. I.; Akhtar, A.; Ashraf, R. S.; Zhang, N.; Pollet, B. G.; Schwingenschlögl, U. et al. In situ grown oxygen-vacancy-rich copper oxide nanosheets on a copper foam electrode afford the selective oxidation of alcohols to value-added chemicals. Commun. Chem. 2022, 5, 19.

[7]

Khan, M.; Abdullah, M. I.; Samad, A.; Shao, Z.; Mushiana, T.; Akhtar, A.; Hameed, A.; Zhang, N.; Schwingenschlögl, U.; Ma, M. M. Inhibitor and activator: Dual role of subsurface sulfide enables selective and efficient electro-oxidation of methanol to formate on CuS@CuO core–shell nanosheet arrays. Small 2023, 19, 2205499.

[8]

Li, J. S.; Wei, R. L.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.; Yang, Y. Y.; Cabot, A.; Cui, C. H. Selective methanol-to-formate electrocatalytic conversion on branched nickel carbide. Angew. Chem. 2020, 132, 21012–21016.

[9]

Mondal, I.; Hausmann, J. N.; Vijaykumar, G.; Mebs, S.; Dau, H.; Driess, M.; Menezes, P. W. Nanostructured intermetallic nickel silicide (pre)catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv. Energy Mater. 2022, 12, 2200269.

[10]

Guo, L. L.; Yu, Q. P.; Zhai, X. J.; Chi, J. Q.; Cui, T.; Zhang, Y.; Lai, J. P.; Wang, L. Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater. Nano Res. 2022, 15, 8846–8856.

[11]

Jing, T. Y.; Yang, S. K.; Feng, Y. H.; Li, T. T.; Zuo, Y. P.; Rao, D. W. Selective and effective oxidation of 5-hydroxymethylfurfural by tuning the intermediates adsorption on Co-Cu-CNx. Nano Res. 2023, 16, 6670–6678.

[12]

Feng, H. P.; Yu, J. F.; Tang, J.; Tang, L.; Liu, Y. N.; Lu, Y.; Wang, J. J.; Ni, T.; Yang, Y. Y.; Yi, Y. Y. Enhanced electro-oxidation performance of FeCoLDH to organic pollutants using hydrophilic structure. J. Hazard. Mater. 2022, 430, 128464.

[13]

You, B.; Han, G. Q.; Sun, Y. J. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. Chem. Commun. 2018, 54, 5943–5955.

[14]

Bellotti, D.; Cassettari, L.; Mosca, M.; Magistri, L. RSM approach for stochastic sensitivity analysis of the economic sustainability of a methanol production plant using renewable energy sources. J. Clean. Prod. 2019, 240, 117947.

[15]
Kuang, Y. Z.; Rabiee, H.; Ge, L.; Rufford, T. E.; Yuan, Z. G.; Bell, J.; Wang, H. High-concentration electrosynthesis of formic acid/formate from CO2: Reactor and electrode design strategies. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12596.
[16]

Fan, A. X.; Qin, C. L.; Zhao, R. X.; Sun, H. X.; Sun, H.; Dai, X. P.; Ye, J. Y.; Sun, S. G.; Lu, Y. H.; Zhang, X. Phosphorus-doping-tuned PtNi concave nanocubes with high-index facets for enhanced methanol oxidation reaction. Nano Res. 2022, 15, 6961–6968.

[17]

Sun, Y. M.; Liao, H. B.; Wang, J. R.; Chen, B.; Sun, S. N.; Ong, S. J. H.; Xi, S. B.; Diao, C. Z.; Du, Y. H.; Wang, J. O. et al. Covalency competition dominates the water oxidation structure-activity relationship on spinel oxides. Nat. Catal. 2020, 3, 554–563.

[18]

Bao, T.; Xia, Y.; Lu, J. Y.; Zhang, C. Q.; Wang, J.; Yuan, L.; Zhang, Y. X.; Liu, C.; Yu, C. Z. A pacman-like titanium-doped cobalt sulfide hollow superstructure for electrocatalytic oxygen evolution. Small 2022, 18, 2103106.

[19]

Zhao, L.; Sun, Q. J.; Li, M.; Zhong, Y. F.; Shen, P. Q.; Lin, Y. X.; Xu, K. Antiperovskite nitride Cu3N nanosheets for efficient electrochemical oxidation of methanol to formate. Sci. China Mater. 2023, 66, 1820–1828.

[20]

Abdullah, M. I.; Hameed, A.; Zhang, N.; Ma, M. M. Ultrasonic-assisted synthesis of amorphous polyelemental hollow nanoparticles as efficient and stable bifunctional electrocatalysts for overall water splitting. Adv. Mater. Interfaces 2019, 6, 1900586.

[21]

Yang, Y.; Wei, S. Y.; Li, Y. F.; Guo, D. G.; Liu, H. J.; Liu, L. Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution. Appl. Catal. B: Environ. 2022, 314, 121491.

[22]

Zhu, B. T.; Dong, B.; Wang, F.; Yang, Q. F.; He, Y. P.; Zhang, C. J.; Jin, P.; Feng, L. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides. Nat. Commun. 2023, 14, 1686.

[23]

Cheng, Y.; Zhai, M. M.; Hu, J. B. The fabrication of NiCu2S2 from NiCu film on nickel foam for methanol electrooxidation and supercapacitors. Appl. Surf. Sci. 2019, 480, 505–513.

[24]

Rezaee, S.; Shahrokhian, S. Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol. Appl. Catal. B: Environ. 2019, 244, 802–813.

[25]

Yu, Y. N.; Yang, Q. L.; Li, X. S.; Guo, M. S.; Hu, J. B. A bimetallic Ni-Ti nanoparticle modified indium tin oxide electrode fabricated by the ion implantation method for studying the direct electrocatalytic oxidation of methanol. Green Chem. 2016, 18, 2827–2833.

[26]

Li, J. S.; Luo, Z. S.; Zuo, Y.; Liu, J. F.; Zhang, T.; Tang, P. Y.; Arbiol, J.; Llorca, J.; Cabot, A. NiSn bimetallic nanoparticles as stable electrocatalysts for methanol oxidation reaction. Appl. Catal. B: Environ. 2018, 234, 10–18.

[27]

Li, S. L.; Ma, R. G.; Lu, Y.; Pei, Y.; Yang, M. H.; Wang, J. C.; Liu, D. M. In situ growth of free-standing perovskite hydroxide electrocatalysts for efficient overall water splitting. J. Mater. Chem. A 2020, 8, 5919–5926.

[28]

Liu, D.; Zhou, P. F.; Bai, H. Y.; Ai, H. Q.; Du, X. Y.; Chen, M. P.; Liu, D.; Ip, W. F.; Lo, K. H.; Kwok, C. T. et al. Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction. Small 2021, 17, 2101605.

[29]

Peña, M. A.; Fierro, J. L. G. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001, 101, 1981–2018.

[30]

Xu, X. M.; Zhong, Y. J.; Shao, Z. P. Double perovskites in catalysis, electrocatalysis, and photo (electro) catalysis. Trends Chem. 2019, 1, 410–424.

[31]

Cao, Z. S.; Lao, X. Z.; Gao, F. H.; Yang, M.; Sun, J.; Liu, X. H.; Su, R.; Chen, J. Y.; Guo, P. Z. Improvement of electrocatalytic alcohol oxidation by tuning the phase structure of atomically ordered intermetallic Pd-Sn nanowire networks. Sci. China Mater. 2022, 65, 2694–2703.

[32]

Wang, Y.; Wang, X. M.; Wang, Y. Z.; Li, J. P. Acid-treatment-assisted synthesis of Pt-Sn/graphene catalysts and their enhanced ethanol electro-catalytic activity. Int. J. Hydrogen Energy 2015, 40, 990–997.

[33]

Wang, Z. Y.; Wang, Z. C.; Wu, H. B.; Lou, X. W. Mesoporous single-crystal CoSn(OH)6 hollow structures with multilevel interiors. Sci. Rep. 2013, 3, 1391.

[34]

Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.

[35]

Selvam, N. C. S.; Du, L. J.; Xia, B. Y.; Yoo, P. J.; You, B. Reconstructed water oxidation electrocatalysts: The impact of surface dynamics on intrinsic activities. Adv. Funct. Mater. 2021, 31, 2008190.

[36]

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

[37]

Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981.

[38]

Liu, S. H.; Zhang, Y. T.; Mao, X. N.; Li, L.; Zhang, Y.; Li, L. G.; Pan, Y.; Li, X. G.; Wang, L.; Shao, Q. et al. Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy Environ. Sci. 2022, 15, 1672–1681.

[39]

Lim, S. Y.; Park, S.; Im, S. W.; Ha, H.; Seo, H.; Nam, K. T. Chemically deposited amorphous Zn-doped NiFeOxHy for enhanced water oxidation. ACS Catal. 2020, 10, 235–244.

[40]

Fang, Y. G.; Fang, Y. S.; Zong, R. Q.; Yu, Z. Y.; Tao, Y. K.; Shao, J. In situ surface reconstruction of a Ni-based perovskite hydroxide catalyst for an efficient oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 1369–1379.

[41]

He, Z. Y.; Zhang, J.; Gong, Z. H.; Lei, H.; Zhou, D.; Zhang, N.; Mai, W. J.; Zhao, S. J.; Chen, Y. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 2022, 13, 2191.

[42]

Zhang, Z. J.; Liu, Y.; Su, X. Z.; Zhao, Z. W.; Mo, Z. K.; Wang, C. Y.; Zhao, Y. L.; Chen, Y.; Gao, S. Y. Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia. Nano Res. 2023, 16, 6632–6641.

[43]

Abdullah, M. I.; Hameed, A.; Hu, T. P.; Zhang, N.; Ma, M. M. Crystalline multi-metal nanosheets array with enriched oxygen vacancies as efficient and stable bifunctional electrocatalysts for water splitting. ACS Appl. Energy Mater. 2019, 2, 8919–8929.

[44]

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

[45]

Fleischmann, M.; Korinek, K.; Pletcher, D. The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 1971, 31, 39–49.

[46]

Cui, X.; Guo, W. L.; Zhou, M.; Yang, Y.; Li, Y. H.; Xiao, P.; Zhang, Y. H.; Zhang, X. X. Promoting effect of Co in NimCon (m + n = 4) bimetallic electrocatalysts for methanol oxidation reaction. ACS Appl. Mater. Interfaces 2015, 7, 493–503.

[47]
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, 2001; pp 482.
[48]

Naderi, A.; Jourshabani, M.; Lee, B. K. Effects of d-block transition metal impurities on a carbon Cloth/Ni(OH)2 interface for electrocatalytic oxygen evolution reaction. ACS Sustain. Chem. Eng. 2023, 11, 9010–9019.

[49]
Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy: Theory, Experiment, and Applications, 3rd ed.; John Wiley & Sons: Hoboken, 2018.
[50]

Wang, X. P.; Xi, S. B.; Lee, W. S. V.; Huang, P. R.; Cui, P.; Zhao, L.; Hao, W. C.; Zhao, X. S.; Wang, Z. B.; Wu, H. J. et al. Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nat. Commun. 2020, 11, 4647.

[51]

Mathew, X.; Hays, J.; Mejia-García, C.; Contreras-Puente, G.; Punnoose, A. Effect of annealing conditions on the Fe incorporation and ferromagnetism of Sn1−xFexO2: A Raman spectroscopic investigation. J. Appl. Phys. 2006, 99, 08M101.

[52]

Steimecke, M.; Seiffarth, G.; Schneemann, C.; Oehler, F.; Förster, S.; Bron, M. Higher-valent nickel oxides with improved oxygen evolution activity and stability in alkaline media prepared by high-temperature treatment of Ni(OH)2. ACS Catal. 2020, 10, 3595–3603.

[53]

Zhang, P. K.; Wang, W.; Wang, H.; Li, Y. B.; Cui, C. H. Tuning hole accumulation of metal oxides promotes the oxygen evolution rate. ACS Catal. 2020, 10, 10427–10435.

[54]

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

Nano Research
Pages 2388-2399
Cite this article:
Shao J, Fang Y, Wu X, et al. Unraveling the role of NiSnPH@OOH/CC perovskite hydroxide for efficient electrocatalytic oxidation of methanol to formate. Nano Research, 2024, 17(4): 2388-2399. https://doi.org/10.1007/s12274-023-6078-z
Topics:

850

Views

7

Crossref

10

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 14 June 2023
Revised: 26 July 2023
Accepted: 08 August 2023
Published: 18 September 2023
© Tsinghua University Press 2023
Return