AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fine-tuning the structure-tolerance-antitumor efficacy axis of prodrug nanoassemblies via branched aliphatic functionalization

Guanting Li1Fengli Xia1Hongying Xiao1Shunzhe Zheng1Shuwen Fu2Han Qiao2Qianhui Jin1Xuanbo Zhang1Dun Zhou3Chutong Tian1Jin Sun1( )Zhonggui He1( )Bingjun Sun1 ( )
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
Emergency Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
Show Author Information

Graphical Abstract

This work proposes that branched aliphatic alcohol functionalization could fine-tune the structure-tolerance-antitumor efficacy axis of SN38 prodrug nanoassemblies. Long chain branched aliphatic alcohol functionalized SN38 prodrug nanoassemblies showcase multiple therapeutic advantages, ultimately culminating the optimal antitumor efficacy and tolerance.

Abstract

Small-molecule prodrug nanoassemblies have emerged as efficient antitumor drug delivery systems. However, in the case of camptothecins-based prodrug nanoassemblies, linear aliphatic side chain modification often results in rod-shaped or irregularly shaped nanoassemblies, which are highly unfavorable for sterilization through filtration, and may cause capillary blockage upon intravenous injection. The rational design of camptothecins-based prodrug nanoassemblies remains a challenge. Herein, we propose that branched aliphatic alcohol (BAA) functionalization could fine-tune the structure-tolerance-antitumor efficacy axis of prodrug nanoassemblies. Correspondingly, four SN38-BAA prodrugs were synthesized by conjugating 7-ethyl-10-hydroxycamptothecin (SN38) with BAAs of varying lengths via a tumor redox-responsive disulfide bond, which self-assemble into uniform spherical nanoparticles. The length of BAA was found to significant impact the multiple drug delivery process, including colloidal stability, drug release profiles and pharmacokinetics. Overall, SN38-C21 NPs (SN38-11-heneicosanol nanoparticles), featuring the longest BAA, showcased multiple therapeutic advantages, ultimately culminating the optimal antitumor efficacy and tolerance. The findings underscore the potential of BAA functionalization in strengthening the therapeutic outcomes of prodrug nanoassemblies, and provide valuable insights for developing translational camptothecins-based nanomedicines.

Electronic Supplementary Material

Download File(s)
12274_2023_6081_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer 2006, 6, 789–802.

[2]

Li, H.; Wei, W.; Xu, H. Drug discovery is an eternal challenge for the biomedical sciences. Acta Mater. Med. 2022, 1, 1–3.

[3]

Basili, S.; Moro, S. Novel camptothecin derivatives as topoisomerase I inhibitors. Expert Opin. Ther Pat. 2009, 19, 555–574.

[4]

Wang, Z. R.; Little, N.; Chen, J. W.; Lambesis, K. T.; Le, K. T.; Han, W. G.; Scott, A. J.; Lu, J. Q. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy. Nat. Nanotechnol. 2021, 16, 1130–1140.

[5]

Capello, M.; Lee, M.; Wang, H.; Babel, I.; Katz, M. H.; Fleming, J. B.; Maitra, A.; Wang, H. M.; Tian, W. H.; Taguchi, A. et al. Carboxylesterase 2 as a determinant of response to irinotecan and neoadjuvant FOLFIRINOX therapy in pancreatic ductal adenocarcinoma. J. Natl. Cancer Inst. 2015, 107, djv132.

[6]

Yang, W. Q.; Yang, Z. M.; Liu, J. R.; Liu, D.; Wang, Y. J. Development of a method to quantify total and free irinotecan and 7-ethyl-10-hydroxycamptothecin (SN-38) for pharmacokinetic and bio-distribution studies after administration of irinotecan liposomal formulation. Asian J. Pharm. Sci. 2019, 14, 687–697.

[7]

Casey Laizure, S.; Herring, V.; Hu, Z. Y.; Witbrodt, K.; Parker, R. B. The role of human carboxylesterases in drug metabolism: Have we overlooked their importance. Pharmacotherapy 2013, 33, 210–222.

[8]

Li, G. T.; Sun, B. J.; Li, Y. Q.; Luo, C.; He, Z. G.; Sun, J. Small-molecule prodrug nanoassemblies: An emerging nanoplatform for anticancer drug delivery. Small 2021, 17, 2101460.

[9]

Yang, Y. X.; Sun, B. J.; Zuo, S. Y.; Li, X. M.; Zhou, S.; Li, L. X.; Luo, C.; Liu, H. Z.; Cheng, M. S.; Wang, Y. J. et al. Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 2020, 6, eabc1725.

[10]

Sun, B. J.; Luo, C.; Zhang, X. B.; Guo, M. R.; Sun, M. C.; Yu, H.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Zuo, S. Y. et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019, 10, 3211.

[11]

Pei, Q.; Hu, X. L.; Liu, S.; Li, Y.; Xie, Z. G.; Jing, X. B. Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. J. Controlled Release 2017, 254, 23–33.

[12]

Wang, D. P.; Li, L. X.; Xu, H. Z.; Sun, Y. X.; Li, W. X.; Liu, T.; Li, Y.; Shi, X. B.; He, Z. G.; Zhai, Y. L. et al. Rational engineering docetaxel prodrug nanoassemblies: Response modules guiding efficacy enhancement and toxicity reduction. Nano Lett. 2023, 23, 3549–3557.

[13]

Li, Y.; Kang, T. Y.; Wu, Y. J.; Chen, Y. W.; Zhu, J.; Gou, M. L. Carbonate esters turn camptothecin-unsaturated fatty acid prodrugs into nanomedicines for cancer therapy. Chem. Commun. 2018, 54, 1996–1999.

[14]

Lu, J. Q.; Liu, C.; Wang, P. C.; Ghazwani, M.; Xu, J. N.; Huang, Y. X.; Ma, X. C.; Zhang, P. J.; Li, S. The self-assembling camptothecin-tocopherol prodrug: An effective approach for formulating camptothecin. Biomaterials 2015, 62, 176–187.

[15]

Zheng, Y. X.; Yan, X. L.; Wang, Y. L.; Duan, X.; Wang, X. M.; Chen, C. R.; Tian, D. M.; Luo, Z. H.; Zhang, Z. L.; Zeng, Y. C. Hydrophobized SN38 to redox-hypersensitive nanorods for cancer therapy. J. Mater. Chem. B 2019, 7, 265–276.

[16]

Wang, D. P.; Du, C. Y.; Wang, S.; Li, L. X.; Liu, T.; Song, J. X.; He, Z. G.; Zhai, Y. L.; Sun, B. J.; Sun, J. Probing the role of connecting bonds and modifying chains in the rational design of prodrug nanoassemblies. ACS Appl. Mater. Interfaces 2022, 14, 51200–51211.

[17]

Wang, X.; Liu, T.; Huang, Y. T.; Dong, F. D.; Li, L. X.; Song, J. X.; Zuo, S. Y.; Zhu, Z. Y.; Kamei, K. I.; He, Z. G. et al. Critical roles of linker length in determining the chemical and self-assembly stability of SN38 homodimeric nanoprodrugs. Nanoscale Horiz. 2023, 8, 235–244.

[18]

Li, G. T.; Jin, Q. H.; Xia, F. L.; Fu, S. W.; Zhang, X. B.; Xiao, H. Y.; Tian, C. T.; Lv, Q. Z.; Sun, J.; He, Z. G. et al. Smart stimuli-responsive carrier-free nanoassembly of SN38 prodrug as efficient chemotherapeutic nanomedicine. Acta Mater. Med. 2023, 2, 54–63.

[19]

Li, Y. Q.; Li, L. X.; Jin, Q. H.; Liu, T.; Sun, J.; Wang, Y. J.; Yang, Z. J.; He, Z. G.; Sun, B. J. Impact of the amount of PEG on prodrug nanoassemblies for efficient cancer therapy. Asian J. Pharm. Sci. 2022, 17, 241–252.

[20]

Xu, G. F.; Shi, C. Y.; Guo, D. D.; Wang, L. L.; Ling, Y.; Han, X. B.; Luo, J. T. Functional-segregated coumarin-containing telodendrimer nanocarriers for efficient delivery of SN-38 for colon cancer treatment. Acta Biomater. 2015, 21, 85–98.

[21]

Li, G. T.; Sun, B. J.; Zheng, S. Z.; Xu, L.; Tao, W. H.; Zhao, D. Y.; Yu, J.; Fu, S. W.; Zhang, X. B.; Zhang, H. T. et al. Zwitterion-driven shape program of prodrug nanoassemblies with high stability, high tumor accumulation, and high antitumor activity. Adv. Healthc. Mater. 2021, 10, 2101407.

[22]

Sun, B. J.; Luo, C.; Yu, H.; Zhang, X. B.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Kan, Q. M.; Zhang, H. T.; Wang, Y. J. et al. Disulfide bond-driven oxidation-and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano Lett. 2018, 18, 3643–3650.

Nano Research
Pages 2908-2918
Cite this article:
Li G, Xia F, Xiao H, et al. Fine-tuning the structure-tolerance-antitumor efficacy axis of prodrug nanoassemblies via branched aliphatic functionalization. Nano Research, 2024, 17(4): 2908-2918. https://doi.org/10.1007/s12274-023-6081-4
Topics:

723

Views

4

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 14 July 2023
Revised: 07 August 2023
Accepted: 09 August 2023
Published: 30 August 2023
© Tsinghua University Press 2023
Return