AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A self-powered solar-blind UV-enhanced Bi2Se3/a-Ga2O3/p-Si heterojunction photodetector for full spectral photoresponse and imaging

Yajie HanShujie Jiao( )Jiangcheng JingLei ChenPing RongShuai RenDongbo WangShiyong GaoJinzhong Wang( )
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Show Author Information

Graphical Abstract

The paper presents a simple and low-cost two-step synthesis method for the preparation of a self-powered full-spectrum photodetector with enhanced sensitivity to solar-blind ultraviolet, which exhibits a response range from 200 to 850 nm with a responsivity of 1.38 mA/W and a detectivity of 3.22 × 1010 Jones under 254 nm light at 0 V, and displays exceptional stability and imaging capabilities, representing a significant contribution to the self-powered full-spectrum photodetector field.

Abstract

Self-powered full-spectrum photodetectors (PDs) offer numerous advantages, such as broad application fields, high precision, efficiency, and multi-functionality, which represent a highly promising and potentially valuable class of detectors for future development. However, insensitive response to solar-blind ultraviolet (UV) and complex and expensive preparation processes greatly limit their performance and practical application. In this study, a self-powered full-spectrum Bi2Se3/a-Ga2O3/p-Si heterojunction PD with high sensitivity for solar-blind UV band prepared by a simple and low-cost two-step synthesis method is presented. Experiments results reveal that the developed PD has an excellent performance, such as high sensitivity from 200 to 850 nm, and a responsivity of 1.38 mA/W as well as a detectivity of 3.22 × 1010 Jones under 254 nm light at zero bias. Additionally, the unencapsulated device displays exceptional stability and imaging capabilities. It is expected that Bi2Se3/a-Ga2O3/p-Si heterojunction PD with a simple and low-cost synthesis method has great potential for self-powered full-spectrum photodetectors.

References

[1]

Chen, Y. C.; Yang, X.; Zhang, Y.; Chen, X. X.; Sun, J. L.; Xu, Z. Y.; Li, K. Y.; Dong, L.; Shan, C. X. Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium. Nano Res. 2021, 15, 3711–3719.

[2]

Lu, Y. C.; Zhang, Z. F.; Yang, X.; He, G. H.; Lin, C. N.; Chen, X. X.; Zang, J. H.; Zhao, W. B.; Chen, Y. C.; Zhang, L. L. et al. High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes. Nano Res. 2022, 15, 7631–7638.

[3]

Zhang, F.; Yu, Y. L.; Mo, Z. X.; Huang, L.; Xia, Q. L.; Li, B.; Zhong, M. Z.; He, J. Alloying-engineered high-performance broadband polarized Bi1.3In0.7Se3 photodetector with ultrafast response. Nano Res. 2022, 15, 8451–8457.

[4]

Yang, W.; Chen, J. X.; Zhang, Y.; Zhang, Y. J.; He, J. H.; Fang, X. S. Silicon-compatible photodetectors: Trends to monolithically integrate photosensors with chip technology. Adv. Funct. Mater. 2019, 29, 1808182.

[5]

Chen, Y. H.; Su, L. X.; Jiang, M. M.; Fang, X. S. Switch type PANI/ZnO core–shell microwire heterojunction for UV photodetection. J. Mater. Sci. Technol. 2022, 105, 259–265.

[6]

Yang, W.; Hu, K.; Teng, F.; Weng, J. H.; Zhang, Y.; Fang, X. S. High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett. 2018, 18, 4697–4703.

[7]

Chen, J. X.; Liu, X. Y.; Li, Z. Q.; Cao, F.; Lu, X.; Fang, X. S. Work-function-tunable MXenes electrodes to optimize p-CsCu2I3/n-Ca2Nb3−xTaxO10 junction photodetectors for image sensing and logic electronics. Adv. Funct. Mater. 2022, 32, 2201066.

[8]

Wang, H.; Zhang, S. Q.; Wu, X. X.; Luo, H. J.; Liu, J. L.; Mu, Z. S.; Liu, R. R.; Yuan, G.; Liang, Y. J.; Tan, J. et al. Bi2O2Se nanoplates for broadband photodetector and full-color imaging applications. Nano Res. 2023, 16, 7638–7645.

[9]

Dai, Z. Y.; Chen, C.; Wang, G. S.; Lyu, Y. N.; Ma, N. Bandgap-tuned barium bismuth niobate double perovskite for self-powered photodetectors with a full-spectrum response. J. Mater. Chem. C 2023, 11, 574–582.

[10]

Yu, D. J.; Cao, F.; Gu, Y.; Han, Z. Y.; Liu, J. X.; Huang, B.; Xu, X. B.; Zeng, H. B. Broadband and sensitive two-dimensional halide perovskite photodetector for full-spectrum underwater optical communication. Nano Res. 2021, 14, 1210–1217.

[11]

Kalytchuk, S.; Zdražil, L.; Scheibe, M.; Zbořil, R. Purple-emissive carbon dots enhance sensitivity of Si photodetectors to ultraviolet range. Nanoscale. 2020, 12, 8379–8384.

[12]

Chen, L.; Tian, W.; Min, L. L.; Cao, F. R.; Li, L. Si/CuIn0.7Ga0.3Se2 core–shell heterojunction for sensitive and self-driven UV–Vis-NIR broadband photodetector. Adv. Opt. Mater. 2019, 7, 1900023.

[13]

Hu, W.; Cong, H.; Huang, W.; Huang, Y.; Chen, L. J.; Pan, A. L.; Xue, C. L. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci. Appl. 2019, 8, 106.

[14]

Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

[15]

Wang, X. Z.; Pan, D.; Han, Y. X.; Sun, M.; Zhao, J. H.; Chen, Q. Vis-IR wide-spectrum photodetector at room temperature based on p-n junction-type GaAs1−xSbx/InAs core–shell nanowire. ACS Appl. Mater. Interfaces 2019, 11, 38973–38981.

[16]

Yin, Y. X.; Guo, Y. N.; Liu, D.; Miao, C. C.; Liu, F. J.; Zhuang, X. M.; Tan, Y.; Chen, F.; Yang, Z. X. Substrate-free chemical vapor deposition of large-scale III-V nanowires for high-performance transistors and broad-spectrum photodetectors. Adv. Opt. Mater. 2022, 10, 2102291.

[17]

Liu, D.; Yu, B. B.; Liao, M.; Jin, Z. X.; Zhou, L.; Zhang, X. X.; Wang, F. Y.; He, H. T.; Gatti, T.; He, Z. B. Self-powered and broadband lead-free inorganic perovskite photodetector with high stability. ACS Appl. Mater. Interfaces 2020, 12, 30530–30537.

[18]

Cheng, W. J.; Tian, W.; Cao, F. R.; Li, L. Self-powered bifunctional perovskite photodetectors with both broadband and narrowband photoresponse. InfoMat. 2022, 4, e12348.

[19]

Kim, J.; Kwon, S. M.; Kang, Y. K.; Kim, Y. H.; Lee, M. J.; Han, K.; Facchetti, A.; Kim, M. G.; Park, S. K. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 2019, 5, eaax8801.

[20]

Shi, Y. L.; Wu, Z. M.; Dong, X.; Chen, P. Y.; Wang, J. Q.; Yang, J.; Xiang, Z. H.; Shen, M.; Zhuang, Y. M.; Gou, J. et al. A silicon-based PbSe quantum dot near-infrared photodetector with spectral selectivity. Nanoscale. 2021, 13, 12306–12313.

[21]

Liu, J. S.; Wang, Y. X.; Wen, H.; Bao, Q. Y.; Shen, L.; Ding, L. M. Organic photodetectors: Materials, structures, and challenges. Solar RRL 2020, 4, 2000139.

[22]

Xing, S.; Nikolis, V. C.; Kublitski, J.; Guo, E. J.; Jia, X. K.; Wang, Y. Z.; Spoltore, D.; Vandewal, K.; Kleemann, H.; Benduhn, J. et al. Miniaturized VIS-NIR spectrometers based on narrowband and tunable transmission cavity organic photodetectors with ultrahigh specific detectivity above 1014 Jones. Adv. Mater. 2021, 33, 2102967.

[23]

Gao, W.; Zheng, Z. Q.; Huang, L.; Yao, J. D.; Zhao, Y.; Xiao, Y.; Li, J. B. Self-powered SnS1−xSex alloy/silicon heterojunction photodetectors with high sensitivity in a wide spectral range. ACS Appl. Mater. Interfaces 2019, 11, 40222–40231.

[24]

Ferhati, H.; Djeffal, F.; Martin, N. Highly improved responsivity of self-powered UV–visible photodetector based on TiO2/Ag/TiO2 multilayer deposited by GLAD technique: Effects of oriented columns and nano-sculptured surface. Appl. Surf. Sci. 2020, 529, 147069.

[25]

Zhang, M. J.; Wang, L. X.; Meng, L. H.; Wu, X. G.; Tan, Q. W.; Chen, Y. J.; Liang, W. Y.; Jiang, F.; Cai, Y.; Zhong, H. Z. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection. Adv. Opt. Mater. 2018, 6, 1800077.

[26]

Alwadai, N.; Mitra, S.; Hedhili, M. N.; Alamoudi, H.; Xin, B.; Alaal, N.; Roqan, I. S. Enhanced-performance self-powered solar-blind UV-C photodetector based on n-ZnO quantum dots functionalized by p-CuO micro-pyramids. ACS Appl. Mater. Interfaces 2021, 13, 33335–33344.

[27]

Zou, T. Y.; Liu, X. Y.; Qiu, R. Z.; Wang, Y.; Huang, S. Y.; Liu, C.; Dai, Q.; Zhou, H. Enhanced UV-C detection of perovskite photodetector arrays via inorganic CsPbBr3 quantum dot down-conversion layer. Adv. Opt. Mater. 2019, 7, 1801812.

[28]

Chen, X.; Jia, M. C.; Xu, W.; Pan, G. C.; Zhu, J. Y.; Tian, Y. T.; Wu, D.; Li, X. J.; Shi, Z. F. Recent progress and challenges of bismuth-based halide perovskites for emerging optoelectronic applications. Adv. Opt. Mater. 2023, 11, 2202153.

[29]

Peng, M. F.; Wen, Z.; Sun, X. H. Recent progress of flexible photodetectors based on low-dimensional II-VI semiconductors and their application in wearable electronics. Adv. Funct. Mater. 2023, 33, 2211548.

[30]

Woo, G.; Lee, D. H.; Heo, Y.; Kim, E.; On, S.; Kim, T.; Yoo, H. Energy-band engineering by remote doping of self-assembled monolayers leads to high-performance IGZO/p-Si heterostructure photodetectors. Adv. Mater. 2022, 34, 2107364.

[31]

Zhang, Y. L.; Hu, M. N.; Wang, Z. N. Enhanced performances of p-si/n-ZnO self-powered photodetector by interface state modification and pyro-phototronic effect. Nano Energy. 2020, 71, 104630.

[32]

Ozel, K.; Yildiz, A. SnO2/ZnO/p-Si and SnO2/TiO2/p-Si heterojunction UV photodiodes prepared using a hydrothermal method. Sensors Actuat. A: Phys. 2020, 315, 112351.

[33]

Wang, Y. H.; Li, H. R.; Cao, J.; Shen, J. Y.; Zhang, Q. Y.; Yang, Y. T.; Dong, Z. G.; Zhou, T. H.; Zhang, Y.; Tang, W. H. et al. Ultrahigh gain solar blind avalanche photodetector using an amorphous Ga2O3-based heterojunction. ACS Nano. 2021, 15, 16654–16663.

[34]

Qin, Y.; Li, L. H.; Yu, Z. A.; Wu, F. H.; Dong, D. N.; Guo, W.; Zhang, Z. F.; Yuan, J. H.; Xue, K. H.; Miao, X. S. et al. Ultra-high performance amorphous Ga2O3 photodetector arrays for solar-blind imaging. Adv. Sci. (Weinh.) 2021, 8, 2101106.

[35]

Zhou, C. Q.; Liu, K. W.; Chen, X.; Feng, J. H.; Yang, J. L.; Zhang, Z. Z.; Liu, L.; Xia, Y.; Shen, D. Z. Performance improvement of amorphous Ga2O3 ultraviolet photodetector by annealing under oxygen atmosphere. J. Alloys Compd. 2020, 840, 155585.

[36]

Gu, K. Y.; Zhang, Z. L.; Huang, H. F.; Tang, K.; Huang, J.; Liao, M. Y.; Wang, L. J. Tailoring photodetection performance of self-powered Ga2O3 UV solar-blind photodetectors through asymmetric electrodes. J. Mater. Chem. C 2023, 11, 5371–5377.

[37]

Yang, M.; Han, Q.; Liu, X. C.; Han, J. Y.; Zhao, Y. F.; He, L.; Gou, J.; Wu, Z. M.; Wang, X. R.; Wang, J. Ultrahigh stability 3D TI Bi2Se3/MoO3 thin film heterojunction infrared photodetector at optical communication waveband. Adv. Funct. Mater. 2020, 30, 1909659.

[38]

Lu, C. H.; Luo, M. W.; Dong, W.; Ge, Y. Q.; Han, T. T.; Liu, Y. Q.; Xue, X. Y.; Ma, N.; Huang, Y. Y.; Zhou, Y. X. et al. Bi2Te3/Bi2Se3/Bi2S3 cascade heterostructure for fast-response and high-photoresponsivity photodetector and high-efficiency water splitting with a small bias voltage. Adv. Sci. (Weinh.) 2023, 10, 2205460.

[39]

Chen, Z. W.; Saito, K.; Tanaka, T.; Guo, Q. X. Low threshold voltage blue light emitting diodes based on thulium doped gallium oxides. Appl. Phys. Express 2021, 14, 081002.

[40]

Liu, M.; Liu, F. Y.; Man, B. Y.; Bi, D.; Xu, X. Y. Multi-layered nanostructure Bi2Se3 grown by chemical vapor deposition in selenium-rich atmosphere. Appl. Surf. Sci. 2014, 317, 257–261.

[41]

Zamani, M.; Jamali-Sheini, F.; Cheraghizade, M. Visible-range and self-powered bilayer p-Si/n-Bi2S3 heterojunction photodetector: The effect of Au buffer layer on the optoelectronics performance. J. Alloys Compd. 2022, 905, 164119.

[42]

Zhang, H. B.; Zhang, X. J.; Liu, C.; Lee, S. T.; Jie, J. S. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano 2016, 10, 5113–5122.

[43]

Li, X.; Li, J. Z.; Qiao, Q.; Wang, F.; Li, Y. W.; Hu, Z. G.; Chu, J. H. Electrical characteristics and carrier injection mechanisms of atomic layer deposition synthesized n-SnO2/p-Si heterojunction. Mater. Res. Express 2018, 6, 035909.

[44]

Zhou, J. Y.; Chen, L. L.; Wang, Y. Q.; He, Y. M.; Pan, X. J.; Xie, E. Q. An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors. Nanoscale 2016, 8, 50–73.

[45]

Li, M. Q.; Dang, L. Y.; Wang, G. G.; Li, F.; Han, M.; Wu, Z. P.; Li, G. Z.; Liu, Z.; Han, J. C. Bismuth oxychalcogenide nanosheet: Facile synthesis, characterization, and photodetector application. Adv. Mater. Technol. 2020, 5, 2000180.

[46]

Rong, P.; Gao, S. Y.; Ren, S.; Lu, H. Q.; Yan, J.; Li, L.; Zhang, M. Y.; Han, Y. J.; Jiao, S. J.; Wang, J. Z. Large-area freestanding Bi2S3 nanofibrous membranes for fast photoresponse flexible IR imaging photodetector. Adv. Funct. Mater. 2023, 33, 2300159.

[47]

Wang, F. K.; Li, L. G.; Huang, W. J.; Li, L.; Jin, B.; Li, H. Q.; Zhai, T. Y. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv. Funct. Mater. 2018, 28, 1802707.

[48]

Ozel, K.; Yildiz, A. Estimation of maximum photoresponsivity of n-SnO2/p-Si heterojunction-based UV photodetectors. Phys. Status Solidi Rap. Res. Lett. 2022, 16, 2100490.

[49]

Prabakar, K.; Venkatachalam, S.; Jeyachandran, Y. L.; Narayandass, S. K.; Mangalaraj, D. Microstructure, Raman and optical studies on Cd0.6Zn0.4Te thin films. Mat. Sci. Eng. B 2004, 107, 99–105.

[50]

Han, Z. Y.; Song, S.; Liang, H. L.; Shao, H.; Hu, S. G.; Wang, Y.; Wang, J. W.; Mei, Z. X. High-performance IGZO/Ga2O3 dual-active-layer thin film transistor for deep UV detection. Appl. Phys. Lett. 2022, 120, 262102.

[51]

Cui, S. J.; Mei, Z. X.; Zhang, Y. H.; Liang, H. L.; Du, X. L. Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates. Adv. Opt. Mater. 2017, 5, 1700454.

[52]

Park, T. G.; Jeon, J. H.; Chun, S. H.; Lee, S.; Rotermund, F. Ultrafast interfacial carrier dynamics and persistent topological surface states of Bi2Se3 in heterojunctions with VSe2. Commun. Phys. 2022, 5, 182.

[53]

Mihalache, I.; Radoi, A.; Pascu, R.; Romanitan, C.; Vasile, E.; Kusko, M. Engineering graphene quantum dots for enhanced ultraviolet and visible light p-Si nanowire-based photodetector. ACS Appl. Mater. Interfaces 2017, 9, 29234–29247.

[54]

Zhao, B. W.; Li, K. K.; Liu, Q.; Liu, X. Z. Ultrasensitive self-powered deep-ultraviolet photodetector based on in situ epitaxial Ga2O3/Bi2Se3 heterojunction. IEEE Trans. Electron Dev. 2022, 69, 1894–1899.

[55]

Li, S.; Guo, D. Y.; Li, P. G.; Wang, X.; Wang, Y. H.; Yan, Z. Y.; Liu, Z.; Zhi, Y. S.; Huang, Y. Q.; Wu, Z. P. et al. Ultrasensitive, superhigh signal-to-noise ratio, self-powered solar-blind photodetector based on n-Ga2O3/p-CuSCN core–shell microwire heterojunction. ACS Appl. Mater. Interfaces 2019, 11, 35105–35114.

[56]

Wang, J. T.; Zhou, Y.; Wang, Z. H.; Wang, B. Y.; Li, Y. Q.; Wu, B. H.; Hao, C. L.; Zhang, Y. J.; Zheng, H. W. Piezo-phototronic effect regulated broadband photoresponse of a-Ga2O3/ZnO heterojunction. Nanoscale 2023, 15, 7068–7076.

[57]

Yu, M.; Fang, C. C.; Han, J. F.; Liu, W. L.; Gao, S. M.; Huang, K. Construction of Bi2O2Se/Bi2Se3 van der Waals heterostructures for self-powered and broadband photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 13507–13515.

[58]

Zhang, Y.; Zhang, F.; Xu, Y. G.; Huang, W. C.; Wu, L. M.; Dong, Z. J.; Zhang, Y. P.; Dong, B. Q.; Zhang, X. W.; Zhang, H. Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods 2019, 3, 1900349.

Nano Research
Pages 2960-2970
Cite this article:
Han Y, Jiao S, Jing J, et al. A self-powered solar-blind UV-enhanced Bi2Se3/a-Ga2O3/p-Si heterojunction photodetector for full spectral photoresponse and imaging. Nano Research, 2024, 17(4): 2960-2970. https://doi.org/10.1007/s12274-023-6082-3
Topics:

693

Views

8

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 15 June 2023
Revised: 08 August 2023
Accepted: 10 August 2023
Published: 18 September 2023
© Tsinghua University Press 2023
Return