AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Magnetic nanoparticle-modified hollow double-shell SiC@C@FeCo with excellent electromagnetic wave absorption

Guiyu Peng1,2Jintang Zhou1,2( )Jiaqi Tao1,2Weize Wang1,2Jun Liu1,2Junru Yao1,2Yijie Liu1,2Zhengjun Yao1,2
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
Show Author Information

Graphical Abstract

Based on preparing hollow SiC@C, adjusting the initial metal ion concentration and hydrothermal insulation time, combined with the carbon thermal reduction process, ternary composite nano microwave absorber SiC@C@FeCo (SCFC) is successfully prepared.

Abstract

Integrated micro and nanostructures, heterogeneous components, defects, and interfaces is the way to develop high-performance microwave absorbing materials. However, there still needs to be more precise experimental routes and effective validation. In this work, by a continuous process of vacuum sintering, hydrothermal, and carbon thermal reduction, magnetic FeCo nanoparticles were successfully embedded on the hollow double-shell mesoporous SiC@C surface, thus solving the challenges of a single component loss mechanism. The hollow double-shell nanostructure introduces air to enhance impedance matching while significantly reducing the density of the material. The extensive defects and heterogeneous grain boundaries effectively enhance the polarization loss capacity. The magnetic loss mechanism introduced by the magnetic particles effectively improves the impedance matching properties of the material. The synergy of these multiple advantages has enabled the SCFC2-8 (here SiC@C@FeCo is abbreviated to SCFC, 2 represents the initial metal ion content, and 8 represents the hydrothermal time) sample to achieve an adequate absorption bandwidth of 6.09 GHz at 2.0 mm. With a minimum reflection loss of −60.56 dB, the absorption bandwidth can cover the entire C, X, and Ku bands by adjusting the matching thickness (1.3–4.0 mm). This work provides a valuable paradigm for the deeper exploitation of microwave absorption potential and guides the development of other high-performance materials.

Electronic Supplementary Material

Download File(s)
12274_2023_6084_MOESM1_ESM.pdf (4.5 MB)

References

[1]

Xu, Z. K.; Li, J. T.; Li, J. Z.; Du, J. N.; Li, T.; Zeng, W. G.; Qiu, J. H.; Meng, F. B. Bionic structures for optimizing the design of stealth materials. Phys. Chem. Chem. Phys. 2023, 25, 5913–5925.

[2]

Meng, F. B.; Chen, Y.; Liu, W. H.; Zhang, L. K.; Deng, W. T.; Zhao, Z. C. Multifunctional RGO-based films with “brick-slurry” structure: High-efficiency electromagnetic shielding performance, high strength and excellent environmental adaptability. Carbon 2022, 200, 156–165.

[3]

Luo, J. H.; Yan, W. X.; Li, X. P.; Shu, P. C.; Mei, J.; Shi, Y. F. Carbon nanotubes decorated FeNi/nitrogen-doped carbon composites for lightweight and broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 207–217.

[4]

Yi, P. S.; Yao, Z. J.; Zhou, J. T.; Wei, B.; Lei, L.; Tan, R. Y.; Fan, H. Y. Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based MOFs towards lightweight and efficient microwave absorbers. Nanoscale 2021, 13, 3119–3135.

[5]

He, X. X.; Zhou, J. T.; Tao, J. Q.; Liu, Y. J.; Wei, B.; Yao, Z. J.; Tao, X. W. Preparation of porous CoNi/N-doped carbon microspheres based on magnetoelectric coupling strategy: A new choice against electromagnetic pollution. J. Colloid Interface Sci. 2022, 626, 123–135.

[6]
Zhai, N. X.; Luo, J. H.; Shu, P. C.; Mei, J.; Li, X. P.; Yan, W. X. 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption. Nano Res. 2023, 16, 10698–10706.
[7]

Luo, J. H.; Li, X. P.; Yan, W. X.; Shu, P. C.; Mei, J. RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption. Carbon 2023, 205, 552–561.

[8]

Sun, L. F.; Zhu, Q. Q.; Jia, Z. R.; Guo, Z. Q.; Zhao, W. R.; Wu, G. L. CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon 2023, 208, 1–9.

[9]

Yang, N.; Luo, Z. X.; Wu, G.; Wang, Y. Z. Superhydrophobic hierarchical hollow carbon microspheres for microwave-absorbing and self-cleaning two-in-one applications. Chem. Eng. J. 2023, 454, 140132.

[10]

Zhang, X. C.; Liu, M. J.; Xu, J.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, X. L.; Zhang, X. T.; Chen, Y. J. Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chem. Eng. J. 2022, 433, 133794.

[11]

Cheng, Y. J.; Sun, X. X.; Yang, S.; Wang, D.; Liang, L.; Wang, S. S.; Ning, Y. H.; Yin, W. L.; Li, Y. B. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation. Chem. Eng. J. 2023, 452, 139376.

[12]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[13]

Li, T.; Li, J. Z.; Xu, Z. K.; Tian, Y. R.; Li, J. T.; Du, J. N.; Meng, F. B. Electromagnetic response of multistage-helical nano-micro conducting polymer structures and their enhanced attenuation mechanism of multiscale-chiral synergistic effect. Small 2023, 19, 2300233.

[14]

Tian, Y. R.; Zhi, D. D.; Li, T.; Li, J. Z.; Li, J. T.; Xu, Z. K.; Kang, W.; Meng, F. B. Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 2023, 464, 142644.

[15]

Cao, X. L.; Liu, X. H.; Zhu, J. H.; Jia, Z. R.; Liu, J. K.; Wu, G. L. Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J. Colloid Interface Sci. 2023, 634, 268–278.

[16]

Zhang, H. X.; Sun, K. G.; Chen, L.; Wu, G. L. Core–shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 242–252.

[17]

Liu, J.; Wei, X. F.; Gao, L. L.; Tao, J. Q.; Xu, L. L.; Peng, G. Y.; Jin, H. S.; Wang, Y. C.; Yao, Z. J.; Zhou, J. T. An overview of C-SiC microwave absorption composites serving in harsh environments. J. Eur. Ceram. Soc. 2023, 43, 1237–1254.

[18]

Chen, J. P.; Du, Y. F.; Wang, Z. F.; Liang, L. L.; Jia, H.; Liu, Z.; Xie, L. J.; Zhang, S. C.; Chen, C. M. Anchoring of SiC whiskers on the hollow carbon microspheres inducing interfacial polarization to promote electromagnetic wave attenuation capability. Carbon 2021, 175, 11–19.

[19]

Jiao, Z. B.; Huyan, W. J.; Yao, J. R.; Yao, Z. J.; Zhou, J. T.; Liu, P. J. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling. J. Mater. Sci. Technol. 2022, 113, 166–174.

[20]

Zhou, Z. H.; Zhu, Q. Q.; Liu, Y.; Zhang, Y.; Jia, Z. R.; Wu, G. L. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 2023, 15, 137.

[21]

Pan, Y. L.; Zhu, Q. Q.; Zhu, J. H.; Cheng, Y. H.; Yu, B. W.; Jia, Z. R.; Wu, G. L. Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. 2023, 16, 10666–10677.

[22]

Jiao, Y. Z.; Dai, Z. Y.; Feng, M. N.; Luo, J. H.; Xu, Y. Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe-alloy/C 0D/2D nanocomposites. Mater. Today Phys. 2023, 33, 101058.

[23]
Zhai, N. X.; Luo, J. H.; Xiao, M. W.; Zhang, Y. C.; Yan, W. X.; Xu, Y. In situ construction of Co@nitrogen-doped carbon/Ni nanocomposite for broadband electromagnetic wave absorption. Carbon 2023, 203, 416–425.
[24]

Liu, J.; Tao, J. Q.; Gao, L. L.; He, X. X.; Wei, B.; Gu, Y. S.; Yao, Z. J.; Zhou, J. T. Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption. Chem. Eng. J. 2022, 433, 134484.

[25]

Tao, J. Q.; Tan, R. Y.; Xu, L. L.; Zhou, J. T.; Yao, Z. J.; Lei, Y. M.; Chen, P.; Li, Z.; Ou, J. Z. Ion-exchange strategy for metal-organic frameworks-derived composites with tunable hollow porous and microwave absorption. Small Methods 2022, 6, 2200429.

[26]

Jiao, Z. B.; Huyan, W. J.; Yang, F.; Yao, J. R.; Tan, R. Y.; Chen, P.; Tao, X. W.; Yao, Z. J.; Zhou, J. T.; Liu, P. J. Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 2022, 14, 173.

[27]

Zhou, C.; Geng, S.; Xu, X. W.; Wang, T. H.; Zhang, L. Q.; Tian, X. J.; Yang, F.; Yang, H. T.; Li, Y. F. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 2016, 108, 234–241.

[28]

Wang, L.; Li, X.; Li, Q. Q.; Zhao, Y. H.; Che, R. C. Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: As a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 2018, 10, 22602–22610.

[29]

Tao, J. Q.; Zhou, J. T.; Yao, Z. J.; Jiao, Z. B.; Wei, B.; Tan, R. Y.; Li, Z. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties. Carbon 2021, 172, 542–555.

[30]

Pan, Y.; Baptista, J. L. Chemical instability of silicon carbide in the presence of transition metals. J. Am. Ceram. Soc. 1996, 79, 2017–2026.

[31]

Yang, F.; Yao, J. R.; Jin, L. Q.; Huyan, W. J.; Zhou, J. T.; Yao, Z. J.; Liu, P. J.; Tao, X. W. Multifunctional Ti3C2Tx MXene/aramid nanofiber/polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment. Compos. Part B:Eng. 2022, 243, 110161.

[32]

Tan, R. Y.; Zhou, J. T.; Yao, Z. J.; Wei, B.; Zu, J. Q.; Lin, H. Y.; Li, Z. Ferrero Rocher® chocolates-like FeCo/C microspheres with adjustable electromagnetic properties for effective microwave absorption. J. Alloys Compd. 2021, 857, 157568.

[33]

Liu, Y. J.; Wei, X. F.; He, X. X.; Yao, J. R.; Tan, R. Y.; Chen, P.; Yao, B. Y.; Zhou, J. T.; Yao, Z. J. Multifunctional shape memory composites for joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 2023, 33, 2211352.

[34]

Fang, G.; Liu, C. Y.; Wei, X. Y.; Cai, Q. Y.; Chen, C.; Xu, G. Y.; Ji, G. B. Determining the preferable polarization loss for magnetoelectric microwave absorbers by strategy of controllably regulating defects. Chem. Eng. J. 2023, 463, 142440.

[35]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[36]

Tao, J. Q.; Xu, L. L.; Pei, C. B.; Gu, Y. S.; He, Y. R.; Zhang, X. F.; Tao, X. W.; Zhou, J. T.; Yao, Z. J.; Tao, S. F. et al. Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 2023, 33, 2211996.

[37]

Jin, L. Q.; Yi, P. S.; Wan, L.; Hou, J. S.; Chen, P.; Zu, J. Q.; Wei, B.; Yao, Z. J.; Zhou, J. T. Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chem. Eng. J. 2022, 427, 130940.

[38]
Liu, Y. J.; He, X. X.; Wang, Y. C.; Cheng, Z. Y.; Yao, Z. J.; Zhou, J. T.; Zuo, Y. X.; Chen, R. X.; Lei, Y. M.; Tan, R. Y. et al. Controlled synthesis of MOF-derived nano-microstructure toward lightweight and wideband microwave absorption. Small, in press, https://doi.org/10.1002/smll.202302633.
[39]

Wang, C. X.; Liu, Y.; Jia, Z. R.; Zhao, W. R.; Wu, G. L. Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 2023, 15, 13.

[40]

Kadu, B. S.; Wani, K. D.; Kaul-Ghanekar, R.; Chikate, R. C. Degradation of doxorubicin to non-toxic metabolites using Fe-Ni bimetallic nanoparticles. Chem. Eng. J. 2017, 325, 715–724.

[41]

Zhang, M.; Li, Z. J.; Wang, T.; Ding, S. Q.; Song, G. Y.; Zhao, J.; Meng, A. L.; Yu, H. Y.; Li, Q. D. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites. Chem. Eng. J. 2019, 362, 619–627.

[42]

Wang, X. Y.; Lu, Y. K.; Zhu, T.; Chang, S. C.; Wang, W. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 2020, 388, 124317.

[43]
Hou, T. Q.; Wang, J. W.; Zheng, T. T.; Liu, Y.; Wu, G. L.; Yin, P. F. Anion exchange of metal particles on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption. Small, in press, https://doi.org/10.1002/smll.202303463.
[44]

Chen, Z. D.; Wu, Z. Y.; Su, J. J.; Li, J. P.; Gao, B.; Fu, J. J.; Zhang, X. M.; Huo, K. F.; Chu, P. K. Large-scale and low-cost synthesis of in situ generated SiC/C nano-composites from rice husks for advanced electromagnetic wave absorption applications. Surf. Coat. Technol. 2021, 406, 126641.

[45]

Zhang, X. F.; Xu, L. L.; Zhou, J. T.; Zheng, W. J.; Jiang, H.; Zuraiqi, K.; Li, G. K.; Liu, J.; Zavabeti, A. Liquid metal-derived two-dimensional layered double oxide nanoplatelet-based coatings for electromagnetic wave absorption. ACS Appl. Nano Mater. 2021, 4, 9200–9212.

[46]

Wu, G. L.; Cheng, Y. H.; Yang, Z. H.; Jia, Z. R.; Wu, H. J.; Yang, L. J.; Li, H. L.; Guo, P. Z.; Lv, H. L. Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 2018, 333, 519–528.

[47]

Deng, J. S.; Wang, Q. B.; Zhou, Y. Y.; Zhao, B.; Zhang, R. Facile design of a ZnO nanorod-Ni core–shell composite with dual peaks to tune its microwave absorption properties. RSC Adv. 2017, 7, 9294–9302.

[48]

Liu, P. J.; Yao, Z. J.; Zhou, J. T.; Yang, Z. H.; Kong, L. B. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749.

[49]

Yao, J. R.; Yang, F.; Yao, Z. J.; Wan, L.; Hou, J. S.; Jiao, Z. B.; Huyan, W. J.; He, Y. R.; Chen, P.; Zhou, J. T. Ultrathin self-assembly MXene@flake carbonyl iron composites with efficient microwave absorption at elevated temperatures. Adv. Electron. Mater. 2021, 7, 2100587.

[50]

Zhou, J. T.; Tao, J. Q.; Yao, Z. J.; Xu, L. L.; Li, Z.; Chen, P. Ag nanoparticles embedded in multishell carbon nanoparticles for microwave absorption. ACS Appl. Nano Mater. 2021, 4, 5425–5436.

[51]

Hu, P. T.; Dong, S.; Li, X. T.; Chen, J. M.; Zhang, X. H.; Hu, P.; Zhang, S. S. A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties. J. Mater. Chem. C 2019, 7, 9219–9228.

[52]

Wei, B.; Zhou, J. T.; Yao, Z. J.; Haidry, A. A.; Guo, X. L.; Lin, H. Y.; Qian, K.; Chen, W. J. The effect of Ag nanoparticles content on dielectric and microwave absorption properties of β-SiC. Ceram. Int. 2020, 46, 5788–5798.

[53]

Liu, J.; Gu, Y. S.; Gao, L. L.; Tao, J. Q.; Tan, R. Y.; Duan, L. T.; Yao, Z. J.; Zhou, J. T. Hollow multi-shell SiC@C@PANI nanoparticles with broadband microwave absorption performance. Appl. Surf. Sci. 2023, 613, 156098.

[54]

Liu, P. J.; Ng, V. M. H.; Yao, Z. J.; Zhou, J. T.; Lei, Y. M.; Yang, Z. H.; Lv, H. L.; Kong, L. B. Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 16404–16416.

[55]

Yang, L. J.; Zhou, X. D.; Jia, Z. R.; Lv, H. L.; Zhu, Y. T.; Liu, J. C.; Yang, Z. H. Selective tailoring of covalent bonds on graphitized hollow carbon spheres towards controllable porous structure and wideband electromagnetic absorption. Carbon 2020, 167, 843–851.

[56]

Chen, X. T.; Wang, Z. D.; Zhou, M.; Zhao, Y.; Tang, S. L.; Ji, G. B. Multilevel structure carbon aerogels with 99.999% electromagnetic wave absorptivity at 1.8 mm and efficient thermal stealth. Chem. Eng. J. 2023, 452, 139110.

[57]

Zhi, D. D.; Li, T.; Qi, Z. H.; Li, J. Z.; Tian, Y. R.; Deng, W. T.; Meng, F. B. Core–shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.

[58]

Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Shao, G.; Fan, B. B.; Bai, Z. Y.; Zhang, R. Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 28917–28925.

[59]

Zhang, X. M.; Ji, G. B.; Liu, W.; Zhang, X. X.; Gao, Q. W.; Li, Y. C.; Du, Y. W. A novel Co/TiO2 nanocomposite derived from a metal-organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C 2016, 4, 1860–1870.

[60]

Wang, S. Y.; Peng, S. S.; Zhong, S. T.; Jiang, W. Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@air@C hierarchical heterostructures for efficient electromagnetic wave absorption. J. Mater. Chem. C 2018, 6, 9465–9474.

[61]

Lu, B.; Dong, X. L.; Huang, H.; Zhang, X. F.; Zhu, X. G.; Lei, J. P.; Sun, J. P. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J. Magn. Magn. Mater. 2008, 320, 1106–1111.

[62]

Wang, Z. Z.; Bi, H.; Liu, J.; Sun, T.; Wu, X. L. Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite. J. Magn. Magn. Mater. 2008, 32, 2132–2139.

[63]

Aharoni, A. Effect of surface anisotropy on the exchange resonance modes. J. Appl. Phys. 1997, 81, 830–833.

Nano Research
Pages 3164-3174
Cite this article:
Peng G, Zhou J, Tao J, et al. Magnetic nanoparticle-modified hollow double-shell SiC@C@FeCo with excellent electromagnetic wave absorption. Nano Research, 2024, 17(4): 3164-3174. https://doi.org/10.1007/s12274-023-6084-1
Topics:

788

Views

9

Crossref

13

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 02 July 2023
Revised: 02 July 2023
Accepted: 10 August 2023
Published: 11 October 2023
© Tsinghua University Press 2023
Return