AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Magneto-electric integrated design strategy of NiCo@C composites for synergistic absorption and conversion in mid-high frequency microwaves

Yijie Liu1,2Jintang Zhou1,2( )Xiaoxuan He1,2Lvtong Duan1,2Yucheng Wang1,2Zhenyu Cheng1,2Zhengjun Yao1,2( )
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
Show Author Information

Graphical Abstract

The morphology, composition, and defect states of NiCo@C materials are controlled by our chemical synthesis route. NiCo@C particles ultimately achieve synergistic absorption effects at low thickness (d < 3.5 mm) at middle frequencies (6–10 GHz) and high frequencies (10.5–18 GHz). Broadband absorption of electromagnetic waves and mid-high frequency band conversion are realized.

Abstract

Achieving synergistic absorption of electromagnetic waves (EMWs) in the mid-high frequency and absorption band conversion is an urgent problem. However, the present solution is usually a straightforward mixture of magnetic component-carbon component. Hereby, we optimize the magnetic properties and electrical relaxation response from a chemical synthesis perspective. Through integrated design, the contents of carbon components and multi-dimensional morphology are controlled by retaining strong magnetic properties. The morphology design and the construction of heterogeneous interfaces will boost the intense response of charge in the surrounding to enhance the polarization effect. The multi-dimensional structure and electromagnetic (EM) properties of the sample after optimized engineering have an extremely powerful absorption conversion effect on EMW energy. NiCo@C particles ultimately achieve synergistic absorption effects at low thickness (d < 3.5 mm) at middle frequencies (6–10 GHz) and high frequencies (10.5–18 GHz). Our work establishes a correlation mechanism between the physical and chemical properties of materials and EM parameters. It also provides insight into the synergistic absorption of EMWs in the mid-high frequency and absorption band conversion strategies.

Electronic Supplementary Material

Download File(s)
12274_2023_6085_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J. B.; Zhao, D. Y.; Albahily, K.; Vinu, A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev. 2020, 49, 4360–4404.

[2]

Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y. et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686.

[3]

Zhang, J. H.; Zhong, D. C.; Lu, T. B. Co(Ⅱ)-based molecular complexes for photochemical CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2008068.

[4]

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

[5]

Kovačič, Ž.; Likozar, B.; Huš, M. Photocatalytic CO2 reduction: A review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal. 2020, 10, 14984–15007.

[6]

Li, K.; Peng, B. S.; Peng, T. Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.

[7]

Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.

[8]

Materna, K. L.; Jiang, J. B.; Regan, K. P.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W. Optimization of photoanodes for photocatalytic water oxidation by combining a heterogenized iridium water-oxidation catalyst with a high-potential porphyrin photosensitizer. ChemSusChem 2017, 10, 4526–4534.

[9]

Sabbah, A.; Shown, I.; Qorbani, M.; Fu, F. Y.; Lin, T. Y.; Wu, H. L.; Chung, P. W.; Wu, C. I.; Santiago, S. R. M.; Shen, J. L. et al. Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon. Nano Energy 2022, 93, 106809.

[10]

Zhang, Y. Z.; Zhi, X.; Harmer, J. R.; Xu, H. L.; Davey, K.; Ran, J. R.; Qiao, S. Z. Facet-specific active surface regulation of BixMOy (M = Mo, V, W) nanosheets for boosted photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202212355.

[11]

Yu, H.; Wu, X.; Mu, Q. Q.; Wei, Z. H.; Gu, Y. D.; Yuan, X. Z.; Lu, Y. T.; Deng, Z.; Peng, Y. Robust photocatalytic hydrogen production on metal-organic layers of Al-TCPP with ultrahigh turnover numbers. Chin. Chem. Lett. 2021, 32, 3833–3836.

[12]

Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.

[13]

Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 2019, 48, 1972–2010.

[14]

Liu, Q.; Cheng, H.; Chen, T. X.; Lo, T. W. B.; Xiang, Z. M.; Wang, F. X. Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO2 reduction to CH3CHO over locally crystallized carbon nitride. Energy Environ. Sci. 2022, 15, 225–233.

[15]

Su, Y. H.; Song, Z. L.; Zhu, W.; Mu, Q. Q.; Yuan, X. Z.; Lian, Y. B.; Cheng, H.; Deng, Z.; Chen, M. Z.; Yin, W. J. et al. Visible-light photocatalytic CO2 reduction using metal-organic framework derived Ni(OH)2 nanocages: A synergy from multiple light reflection, static charge transfer, and oxygen vacancies. ACS Catal. 2021, 11, 345–354.

[16]

Zhang, X. W.; Wang, P.; Lv, X. Y.; Niu, X. Y.; Lin, X. Y.; Zhong, S. X.; Wang, D. M.; Lin, H. J.; Chen, J. R.; Bai, S. Stacking engineering of semiconductor heterojunctions on hollow carbon spheres for boosting photocatalytic CO2 reduction. ACS Catal. 2022, 12, 2569–2580.

[17]

You, F. F.; Wan, J. W.; Qi, J.; Mao, D.; Yang, N. L.; Zhang, Q. H.; Gu, L.; Wang, D. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 junction. Angew. Chem., Int. Ed. 2020, 59, 721–724.

[18]
Bie, C. B.; Zhu, B. C.; Xu, F. Y.; Zhang, L. Y.; Yu, J. G. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv. Mater. 2019, 31, 1902868.
[19]

Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

[20]

Mialane, P.; Mellot-Draznieks, C.; Gairola, P.; Duguet, M.; Benseghir, Y.; Oms, O.; Dolbecq, A. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: From synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 2021, 50, 6152–6220.

[21]

He, H. M.; Sun, Q.; Gao, W. Y.; Perman, J. A.; Sun, F. X.; Zhu, G. S.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. Q. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem., Int. Ed. 2018, 57, 4657–4662.

[22]

Sun, K.; Qian, Y. Y.; Jiang, H. L. Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202217565.

[23]

He, Y. Q.; Li, C. G.; Chen, X. B.; Shi, Z.; Feng, S. H. Visible-light-responsive UiO-66(Zr) with defects efficiently promoting photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2022, 14, 28977–28984.

[24]

Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

[25]

Wang, J. X.; Sun, K.; Wang, D. N.; Niu, X. W.; Lin, Z. Y.; Wang, S. Y.; Yang, W. J.; Huang, J. E.; Jiang, H. L. Precise regulation of the coordination environment of single Co(II) sites in a metal-organic framework for boosting CO2 photoreduction. ACS Catal. 2023, 13, 8760–8769.

[26]

Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

[27]

Cao, L. Y.; Wang, C. Metal-organic layers for electrocatalysis and photocatalysis. ACS Cent. Sci. 2020, 6, 2149–2158.

[28]

Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962–4966.

[29]

Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 7051–7056.

[30]

Yang, W.; Wang, H. J.; Liu, R. R.; Wang, J. W.; Zhang, C.; Li, C.; Zhong, D. C.; Lu, T. B. Tailoring crystal facets of metal-organic layers to enhance photocatalytic activity for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 409–414.

[31]

He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.

[32]

Luo, T. K.; Fan, Y. J.; Mao, J. M.; Yuan, E.; You, E.; Xu, Z. W.; Lin, W. B. Dimensional reduction enhances photodynamic therapy of metal-organic nanophotosensitizers. J. Am. Chem. Soc. 2022, 144, 5241–5246.

[33]

Rada, Z. H.; Abid, H. R.; Shang, J.; Sun, H. Q.; He, Y. D.; Webley, P.; Liu, S. M.; Wang, S. B. Functionalized UiO-66 by single and binary (OH)2 and NO2 groups for uptake of CO2 and CH4. Ind. Eng. Chem. Res. 2016, 55, 7924–7932.

[34]

Saiz, P. G.; Iglesias, N.; Gonzalez Navarrete, B.; Rosales, M.; Quintero, Y. M.; Reizabal, A.; Orive, J.; Fidalgo Marijuan, A.; Larrea, E. S.; Lopes, A. C. et al. Chromium speciation in zirconium-based metal-organic frameworks for environmental remediation. Chem. -Eur. J. 2020, 26, 13861–13872.

[35]

Gutterød, E. S.; Pulumati, S. H.; Kaur, G.; Lazzarini, A.; Solemsli, B. G.; Gunnæs, A. E.; Ahoba-Sam, C.; Kalyva, M. E.; Sannes, J. A.; Svelle, S. et al. Influence of defects and H2O on the hydrogenation of CO2 to methanol over pt nanoparticles in UiO-67 metal-organic framework. J. Am. Chem. Soc. 2020, 142, 17105–17118.

[36]

Planas, N.; Mondloch, J. E.; Tussupbayev, S.; Borycz, J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K.; Cramer, C. J. Defining the proton topology of the Zr6-based metal-organic framework NU-1000. J. Phys. Chem. Lett. 2014, 5, 3716–3723.

[37]

Ma, X.; Liu, H.; Yang, W. J.; Mao, G. Y.; Zheng, L. R.; Jiang, H. L. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J. Am. Chem. Soc. 2021, 143, 12220–12229.

[38]

Manna, K.; Ji, P. F.; Lin, Z. K.; Greene, F. X.; Urban, A.; Thacker, N. C.; Lin, W. B. Chemoselective single-site earth-abundant metal catalysts at metal-organic framework nodes. Nat. Commun. 2016, 7, 12610.

[39]

Gutiérrez-Tarriño, S.; Olloqui-Sariego, J. L.; Calvente, J. J.; Espallargas, G. M.; Rey, F.; Corma, A.; Oña-Burgos, P. Cobalt metal-organic framework based on layered double nanosheets for enhanced electrocatalytic water oxidation in neutral media. J. Am. Chem. Soc. 2020, 142, 19198–19208.

[40]

Li, Y.; Chen, G.; Zhu, Y. P.; Hu, Z. W.; Chan, T. S.; She, S. X.; Dai, J.; Zhou, W.; Shao, Z. P. Activating both basal plane and edge sites of layered cobalt oxides for boosted water oxidation. Adv. Funct. Mater. 2021, 31, 2103569.

[41]

An, L.; Zhang, H.; Zhu, J. M.; Xi, S. B.; Huang, B. L.; Sun, M. Z.; Peng, Y.; Xi, P. X.; Yan, C. H. Balancing activity and stability in spinel cobalt oxides through geometrical sites occupation towards efficient electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202214600.

[42]

Zheng, H. L.; Huang, S. L.; Luo, M. B.; Wei, Q.; Chen, E. X.; He, L.; Lin, Q. P. Photochemical in situ exfoliation of metal-organic frameworks for enhanced visible-light-driven CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 23588–23592.

[43]
Ke, Y.; Liang, Q.; Zhao, S.; Zhang, Z. H.; Li, X. Z.; Li, Z. Y. In situ self-assembled ZIF-67/MIL-125-derived Co3O4/TiO2 p-n heterojunctions for enhanced photocatalytic CO2 reduction. Inorg. Chem. 2022, 61, 2652–2661.
[44]

Wei, M. J.; Xu, X. Y.; Song, J. Q.; Pan, M.; Su, C. Y. A 2D layered cobalt-based metal-organic framework for photoreduction of CO2 to syngas with a controllable wide ratio range. J. Mater. Chem. A 2023, 11, 691–699.

[45]
Han, C.; Zhang, X. D.; Huang, S. S.; Hu, Y.; Yang, Z.; Li, T. T.; Li, Q. P.; Qian, J. J. MOF-on-MOF-derived hollow Co3O4/In2O3 nanostructure for efficient photocatalytic CO2 reduction. Adv. Sci. 2023, 10, 2300797.
[46]

Yang, H. L.; Zhang, D. D.; Luo, Y.; Yang, W. X.; Zhan, X. Q.; Yang, W. Y.; Hou, H. L. Highly efficient and selective visible-light driven photoreduction of CO2 to CO by metal-organic frameworks-derived Ni-Co-O porous microrods. Small 2022, 18, 2202939.

[47]

Yang, H.; Lai, C. L.; Wu, M. L.; Wang, S. D.; Xia, Y.; Pan, F. F.; Lv, K. L.; Wen, L. L. Novel amino-functionalized Ni(II)-based MOFs for efficiently photocatalytic reduction of CO2 to CO with superior selectivity under visible-light illumination. Chem. Eng. J. 2023, 455, 140425.

[48]
Zhao, Y. J.; Shao, Z. C.; Cui, Y.; Geng, K. S.; Meng, X. R.; Wu, J.; Hou, H. W. Guest-induced multilevel charge transport strategy for developing metal-organic frameworks to boost photocatalytic CO2 reduction. Small, in press, https://doi.org/10.1002/smll.202300398.
[49]

Gao, X. S.; Guo, B.; Guo, C. M.; Meng, Q. D.; Liang, J.; Liu, J. X. Zirconium-based metal-organic framework for efficient photocatalytic reduction of CO2 to CO: The influence of doped metal ions. ACS Appl. Mater. Interfaces 2020, 12, 24059–24065.

[50]

Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 2018, 140, 38–41.

[51]

Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

[52]

Mu, X. X.; Jiang, J. F.; Chao, F. F.; Lou, Y. B.; Chen, J. X. Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation. Dalton Trans. 2018, 47, 1895–1902.

[53]

Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.

[54]

Lv, G. R.; Liu, J. M.; Xiong, Z. H.; Zhang, Z. H.; Guan, Z. Y. Selectivity adsorptive mechanism of different nitrophenols on UiO-66 and UiO-66-NH2 in aqueous solution. J. Chem. Eng. Data 2016, 61, 3868–3876.

[55]

Liang, H. S.; Zhang, L. M.; Wu, H. J. Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small 2022, 18.

[56]

Zheng, J. J.; He, W. W.; Hang, T. Y.; Sun, Z. X.; Li, Z. H.; Jiang, S. H.; Li, X. P.; Shiju, E.; Chen, Y. M. Flower-like bimetal-organic framework derived composites with tunable structures for high-efficiency electromagnetic wave absorption. J Colloid Interf Sci 2022, 628, 261–270.

[57]

Sun, H.; Che, R.; You, X.; Jiang, Y.; Yang, Z.; Deng, J.; Qiu, L.; Peng, H. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater 2014, 26, 8120–8125.

[58]

Zhou, C. Y.; Yao, Z. J.; Wei, B.; Li, W. Y.; Li, Z. J.; Tao, X. W.; Zhou, J. T. Facile synthesis of ZIF-67 derived dodecahedral C/NiCO2S4 with broadband microwave absorption performance. Nanoscale 2022, 14, 10375–10388.

Nano Research
Pages 2205-2215
Cite this article:
Liu Y, Zhou J, He X, et al. Magneto-electric integrated design strategy of NiCo@C composites for synergistic absorption and conversion in mid-high frequency microwaves. Nano Research, 2024, 17(4): 2205-2215. https://doi.org/10.1007/s12274-023-6085-0
Topics:

942

Views

3

Crossref

5

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 14 July 2023
Revised: 04 August 2023
Accepted: 10 August 2023
Published: 11 October 2023
© Tsinghua University Press 2023
Return