AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface reconstruction and structural transformation of two-dimensional Ni-Fe MOFs for oxygen evolution in seawater media

Liyuan Xiao1,§Xue Bai1,§Jingyi Han1Tianmi Tang1Siyu Chen1Hui Qi2Changmin Hou3Fuquan Bai4( )Zhenlu Wang1( )Jingqi Guan1( )
Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
The Second Hospital of Jilin University, Changchun 130021, China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Changchun 130023, China

§ Liyuan Xiao and Xue Bai contributed equally to this work.

Show Author Information

Graphical Abstract

Ni-Fe metal-organic framework nanosheets on nickel foam (Ni3Fe-TPA/NF, TPA = terephthalic acid) shows low η10 of 189, 192, and 265 mV for the oxygen evolution reaction (OER) in 1 M KOH, in 0.5 M NaCl + 1 M KOH, and in seawater + 1 M KOH, respectively. During the OER, surface reconstruction and structural transformation occurred, and active Ni3FeOOH species with more oxygen vacancies were in-situ generated on the Ni3Fe-TPA/NF.

Abstract

As a four-electron transfer reaction, oxygen evolution reaction (OER) is limited by large overpotential and slow kinetics. Here, we in-situ synthesized two-dimensional (2D) Ni-Fe metal-organic framework nanosheets on nickel foam (NixFe-TPA/NF, TPA = terephthalic acid) for oxygen evolution in alkaline and alkaline seawater electrolytes. In 1 M KOH, Ni3Fe-TPA/NF shows a low overpotential (η10) of 189 mV at 10 mA·cm−2 and an ultra-low overpotential of only 260 mV at 500 mA·cm−2. In alkaline seawater, Ni3Fe-TPA/NF still provides impressive OER performance, with an η10 of 265 mV. In-situ Raman characterization results show that the phase transition occurs during the OER, and Ni3FeOOH with more oxygen vacancies is in-situ formed, reducing the OER energy barrier. Density functional theory (DFT) reveals that the synergy between Ni and Fe reduces the energy barrier and accelerates the rate-determining step. In addition, the ultra-thin 2D sheet structure and the close combination of Ni3FeOOH and highly conductive NF support ensure the high catalytic OER activity. Therefore, the surface reconstruction and structural modification strategy can be used to design and prepare high-performance OER electrocatalysts for energy-related applications.

Electronic Supplementary Material

Download File(s)
12274_2023_6088_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Han, J. Y.; Guan, J. Q. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966.

[2]

Huang, Z. D.; Feng, C.; Sun, J. P.; Xu, B.; Huang, T. X.; Wang, X. K.; Dai, F. N.; Sun, D. F. Ultrathin metal-organic framework nanosheets-derived yolk–shell Ni0.85Se@NC with rich Se-vacancies for enhanced water electrolysis. CCS Chem. 2021, 3, 2696–2711.

[3]

Han, J. Y.; Niu, X. D.; Guan, J. Q. Unveiling the role of defects in iron oxyhydroxide for oxygen evolution. J. Colloid Interface Sci. 2023, 635, 167–175.

[4]

Xiao, K.; Wang, Y. F.; Wu, P. Y.; Hou, L. P.; Liu, Z. Q. Activating lattice oxygen in spinel ZnCo2O4 through filling oxygen vacancies with fluorine for electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2023, 62, e202301408.

[5]

Han, W. K.; Wei, J. X.; Xiao, K.; Ouyang, T.; Peng, X. W.; Zhao, S. L.; Liu, Z. Q. Activating lattice oxygen in layered lithium oxides through cation vacancies for enhanced urea electrolysis. Angew. Chem., Int. Ed. 2022, 61, e202206050.

[6]

Bai, X.; Fan, Y.; Hou, C. M.; Tang, T. M.; Guan, J. Q. Partial crystallization of Co-Fe oxyhydroxides towards enhanced oxygen evolution activity. Int. J. Hydrogen Energy 2022, 47, 16711–16718.

[7]

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

[8]

Deng, J.; Nellist, M. R.; Stevens, M. B.; Dette, C.; Wang, Y.; Boettcher, S. W. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy. Nano Lett. 2017, 17, 6922–6926.

[9]

Hu, J.; Liang, Y. Q.; Wu, S. L.; Li, Z. Y.; Shi, C. S.; Luo, S. Y.; Sun, H. J.; Zhu, S. L.; Cui, Z. D. Hierarchical nickle-iron layered double hydroxide composite electrocatalyst for efficient oxygen evolution reaction. Mater. Today Nano 2022, 17, 100150.

[10]

Wang, H. Y.; Chen, L. Y.; Tan, L.; Liu, X. E.; Wen, Y. H.; Hou, W. G.; Zhan, T. R. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. J. Colloid Interface Sci. 2022, 613, 349–358.

[11]

Park, Y. S.; Lee, J.; Jang, M. J.; Yang, J. C.; Jeong, J.; Park, J.; Kim, Y.; Seo, M. H.; Chen, Z. W.; Choi, S. M. High-performance anion exchange membrane alkaline seawater electrolysis. J. Mater. Chem. A 2021, 9, 9586–9592.

[12]

Xiao, K.; Lin, R. T.; Wei, J. X.; Li, N.; Li, H.; Ma, T. Y.; Liu, Z. Q. Electrochemical disproportionation strategy to in-situ fill cation vacancies with Ru single atoms. Nano Res. 2022, 15, 4980–4985.

[13]

Chang, J. F.; Wang, G. Z.; Yang, Z. Z.; Li, B. Y.; Wang, Q.; Kuliiev, R.; Orlovskaya, N.; Gu, M.; Du, Y. G.; Wang, G. F. et al. Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 2021, 33, 2101425.

[14]

Song, Y. Y.; Sun, M. Z.; Zhang, S. C.; Zhang, X. Y.; Yi, P.; Liu, J. Z.; Huang, B. L.; Huang, M. H.; Zhang, L. X. Alleviating the work function of vein-like CoxP by Cr doping for enhanced seawater electrolysis. Adv. Funct. Mater. 2023, 33, 2214081.

[15]

Khan, M. A.; Al-Attas, T.; Roy, S.; Rahman, M. M.; Ghaffour, N.; Thangadurai, V.; Larter, S.; Hu, J. G.; Ajayan, P. M.; Kibria, M. G. Seawater electrolysis for hydrogen production: A solution looking for a problem. Energy Environ. Sci. 2021, 14, 4831–4839.

[16]

Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1−xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702–709.

[17]

Feng, S. Y.; Gu, C. S.; Yu, Y. H.; Rao, P.; Deng, P. L.; Li, J.; Kang, Z. Y.; Tian, X. L.; Wu, Z. F. A two-dimensional heterogeneous structured Ni3Se2@MoO3 catalyst for seawater electrolysis. J. Mater. Chem. A 2023, 11, 11740–11747.

[18]

Wang, C. Z.; Zhu, M. Z.; Cao, Z. Y.; Zhu, P.; Cao, Y. Q.; Xu, X. Y.; Xu, C. X.; Yin, Z. Y. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl. Catal. B: Environ. 2021, 291, 120071.

[19]

Sun, H.; Sun, J. K.; Song, Y. Y.; Zhang, Y. F.; Qiu, Y.; Sun, M. X.; Tian, X. Y.; Li, C. Y.; Lv, Z.; Zhang, L. X. Nickel-cobalt hydrogen phosphate on nickel nitride supported on nickel foam for alkaline seawater electrolysis. ACS Appl. Mater. Interfaces 2022, 14, 22061–22070.

[20]

Jiang, N.; Meng, H. M.; Song, L. J.; Yu, H. Y. Study on Ni-Fe-C cathode for hydrogen evolution from seawater electrolysis. Int. J. Hydrogen Energy 2010, 35, 8056–8062.

[21]

Enkhtuvshin, E.; Kim, K. M.; Kim, Y. K.; Mihn, S.; Kim, S. J.; Jung, S. Y.; Thao, N. T. T.; Ali, G.; Akbar, M.; Chung, K. Y. et al. Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis. J. Mater. Chem. A 2021, 9, 27332–27346.

[22]

Yin, X.; Hua, Y. N.; Gao, Z. Two-dimensional materials for high-performance oxygen evolution reaction: Fundamentals, recent progress, and improving strategies. CCS Chem. 2023, 1, 190–226.

[23]

Li, L.; Fang, Z. B.; Deng, W. Z.; Yi, J. D.; Wang, R.; Liu, T. F. Precise construction of stable bimetallic metal-organic frameworks with single-site Ti(IV) incorporation in nodes for efficient photocatalytic oxygen evolution. CCS Chem. 2022, 4, 2782–2792.

[24]

Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan, J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res. 2022, 15, 8714–8750.

[25]

Bai, X.; Guan, J. Q. MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 2022, 43, 2057–2090.

[26]

Xiao, L. Y.; Wang, Z. L.; Guan, J. Q. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord. Chem. Rev. 2022, 472, 214777.

[27]

Lin, C.; He, X.; Li, H. Q.; Zou, J. J.; Que, M. L.; Tian, J. Y.; Qian, Y. Tunable metal-organic framework nanoarrays on carbon cloth constructed by a rational self-sacrificing template for efficient and robust oxygen evolution reactions. CrystEngComm 2021, 23, 7090–7096.

[28]

Meng, C. Q.; Cao, Y.; Luo, Y. L.; Zhang, F.; Kong, Q. Q.; Alshehri, A. A.; Alzahrani, K. A.; Li, T. S.; Liu, Q.; Sun, X. P. A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorg. Chem. Front. 2021, 8, 3007–3011.

[29]

Huo, J. M.; Wang, Y.; Yan, L. T.; Xue, Y. Y.; Li, S. N.; Hu, M. C.; Jiang, Y. C.; Zhai, Q. G. In situ semi-transformation from heterometallic MOFs to Fe-Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Nanoscale 2020, 12, 14514–14523.

[30]

Kim, J. H.; Youn, D. H.; Kawashima, K.; Lin, J.; Lim, H.; Mullins, C. B. An active nanoporous Ni(Fe) OER electrocatalyst via selective dissolution of Cd in alkaline media. Appl. Catal. B: Environ. 2018, 225, 1–7.

[31]

Zhao, J. Z.; Wu, W. B.; Jia, X. Y.; Zhao, Z. L.; Hu, X. A coaxial three-layer (Ni,Fe)OxHy/Ni/Cu mesh electrode: Excellent oxygen evolution reaction activity for water electrolysis. Catal. Sci. Technol. 2020, 10, 1803–1808.

[32]

Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni,Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B: Environ. 2019, 247, 107–114.

[33]

Tan, J. B.; He, X. B.; Yin, F. X.; Chen, B. H.; Liang, X.; Li, G. R.; Yin, H. Q. Fe doped metal organic framework (Ni)/carbon black nanosheet as highly active electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 21431–21441.

[34]

Kahnamouei, M. H.; Shahrokhian, S. Ultrafast two-step synthesis of S-doped Fe/Ni (oxy)hydroxide/Ni nanocone arrays on carbon cloth and stainless-steel substrates for water-splitting applications. ACS Appl. Energy Mater. 2021, 4, 10627–10638.

[35]

Liu, W. J.; Hu, X.; Li, H. C.; Yu, H. Q. Pseudocapacitive Ni-Co-Fe hydroxides/N-doped carbon nanoplates-based electrocatalyst for efficient oxygen evolution. Small 2018, 14, 1801878.

[36]

Qi, D. D.; Chen, X.; Liu, W. P.; Liu, C. X.; Liu, W. B.; Wang, K.; Jiang, J. Z. A Ni/Fe-based heterometallic phthalocyanine conjugated polymer for the oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 642–646.

[37]

Zheng, F. Q.; Zhang, Z. W.; Xiang, D.; Li, P.; Du, C.; Zhuang, Z. H.; Li, X. K.; Chen, W. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. J. Colloid Interface Sci. 2019, 555, 541–547.

[38]

Chai, Y. M.; Shang, X.; Liu, Z. Z.; Dong, B.; Han, G. Q.; Gao, W. K.; Chi, J. Q.; Yan, K. L.; Liu, C. G. Ripple-like NiFeCo sulfides on nickel foam derived from in-situ sulfurization of precursor oxides as efficient anodes for water oxidation. Appl. Surf. Sci. 2018, 428, 370–376.

[39]

Xiao, C. H.; Zhang, B.; Li, D. Partial-sacrificial-template synthesis of Fe/Ni phosphides on Ni foam: A strongly stabilized and efficient catalyst for electrochemical water splitting. Electrochim. Acta 2017, 242, 260–267.

[40]

Wan, Z. X.; Yu, H. B.; He, Q. T.; Hu, Y.; Yan, P. X.; Shao, X.; Isimjan, T. T.; Zhang, B.; Yang, X. L. In-situ growth and electronic structure modulation of urchin-like Ni-Fe oxyhydroxide on nickel foam as robust bifunctional catalysts for overall water splitting. Int. J. Hydrogen Energy 2020, 45, 22427–22436.

[41]

Zhao, T.; Cheng, C.; Wang, D.; Zhong, D. Z.; Hao, G. Y.; Liu, G.; Li, J. P.; Zhao, Q. Preparation of a bimetallic NiFe-MOF on nickel foam as a highly efficient electrocatalyst for oxygen evolution reaction. ChemistrySelect 2021, 6, 1320–1327.

[42]

Yuan, J. X.; Cheng, X. D.; Lei, C. J.; Yang, B.; Li, Z. J.; Luo, K.; Lam, K. H. K.; Lei, L. C.; Hou, Y.; Ostrikov, K. K. Bimetallic oxyhydroxide as a high-performance water oxidation electrocatalyst under industry-relevant conditions. Engineering 2021, 7, 1306–1312.

[43]
Niu, S.; Tang, T.; Qu, Y. J.; Chen, Y. Y.; Luo, H.; Pan, H.; Jiang, W. J.; Zhang, J. N.; Hu, J. S. Mitigating the reconstruction of metal sulfides for ultrastable oxygen evolution at high current density. CCS Chem., in press, https://doi.org/10.31635/ccschem.023.202202663.
[44]

Han, J. Y.; Zhang, M. Z.; Bai, X.; Duan, Z. Y.; Tang, T. M.; Guan, J. Q. Mesoporous Mn-Fe oxyhydroxides for oxygen evolution. Inorg. Chem. Front. 2022, 9, 3559–3565.

[45]

Zheng, Y. P.; Yu, D. H.; Xu, W.; Zhang, K.; Ma, K. L.; Guo, X. Y.; Lou, Y. B.; Hu, M. L. Robust FeCoP nanoparticles grown on a rGO-coated Ni foam as an efficient oxygen evolution catalyst for excellent alkaline and seawater electrolysis. Dalton Trans. 2023, 52, 3493–3500.

[46]

Yang, L. J.; Feng, C.; Guan, C. D.; Zhu, L. J.; Xia, D. H. Construction of seaurchin-like structured Ag2Se-Ag2S-CoCH/NF electrocatalyst with high catalytic activity and corrosion resistance for seawater electrolysis. Appl. Surf. Sci. 2023, 607, 154885.

[47]

Yan, L.; Chen, X. W.; Liu, X. J.; Chen, L. P.; Zhang, B. In situ formed VOOH nanosheet arrays anchored on a Ti3C2Tx MXene as a highly efficient and robust synergistic electrocatalyst for boosting water oxidation and reduction. J. Mater. Chem. A 2020, 8, 23637–23644.

[48]

Chen, J. X.; Long, Q. W.; Xiao, K.; Ouyang, T.; Li, N.; Ye, S. Y.; Liu, Z. Q. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull. 2021, 66, 1063–1072.

[49]

Xing, X. S.; Ren, X. F.; Zeng, X. Y.; Li, A.; Wang, Y. Q.; Zhou, Z. Y.; Guo, Y.; Wu, S. L.; Du, J. M. Accelerating oxygen evolution reaction kinetics by reconstructing layered and defective Ni3FeOOH/FeOOH in a hematite photoanode. Sol. RRL 2023, 7, 2201041.

[50]

Deng, Q.; Huangyang, X. Y.; Zhang, X.; Xiao, Z. H.; Zhou, W. B.; Wang, H. R.; Liu, H. Y.; Zhang, F.; Li, C. Z.; Wu, X. W. et al. Edge-rich multidimensional frame carbon as high-performance electrode material for vanadium redox flow batteries. Adv. Energy Mater. 2022, 12, 2103186.

[51]

Zhong, H. Y.; Wang, X. P.; Sun, G. X.; Tang, Y. X.; Tan, S. D.; He, Q.; Zhang, J.; Xiong, T.; Diao, C. Z.; Yu, Z. G. et al. Optimization of oxygen evolution activity by tuning eg* band broadening in nickel oxyhydroxide. Energy Environ. Sci. 2023, 16, 641–652.

[52]

Cheng, F. P.; Li, Z. J.; Wang, L.; Yang, B.; Lu, J. G.; Lei, L. C.; Ma, T. Y.; Hou, Y. In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal-organic framework nanoarray. Mater. Horiz. 2021, 8, 556–564.

[53]

Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

[54]

Yan, P.; Liu, Q.; Zhang, H.; Qiu, L. C.; Wu, H. B.; Yu, X. Y. Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 15586–15594.

Nano Research
Pages 2429-2437
Cite this article:
Xiao L, Bai X, Han J, et al. Surface reconstruction and structural transformation of two-dimensional Ni-Fe MOFs for oxygen evolution in seawater media. Nano Research, 2024, 17(4): 2429-2437. https://doi.org/10.1007/s12274-023-6088-x
Topics:

825

Views

33

Crossref

33

Web of Science

33

Scopus

0

CSCD

Altmetrics

Received: 03 July 2023
Revised: 29 July 2023
Accepted: 13 August 2023
Published: 07 September 2023
© Tsinghua University Press 2023
Return