AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dimension-dependent mechanical features of Au-nanocrystalline nanofilms

Lijun Ma1,2,§Lena Du3,§Shu Wang2Qing Wang6Shifeng Xue1( )Hanxing Zhu4( )Qian Liu2,5( )
Department of Engineering Mechanics, College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China
Department of Physics, Capital Normal University, Beijing 100048, China
School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute, School of Physics, Nankai University, Tianjin 300457, China
College of Mechanical and Architectural Engineering, Taishan University, Tai’an 271000, China

§ Lijun Ma and Lena Du contributed equally to this work.

Show Author Information

Graphical Abstract

Study on mechanical properties with statistical significance of gold nanofilms demonstrates a strong dimension-dependent nonlinear feature and the strong-yield ratio as well as a still valid Hall–Petch relationship at the nanoscale.

Abstract

For metal nanofilms composed of nanocrystals, the multiple deformation mechanisms will coexist and bring unique and complex elastic-plastic and fracture mechanical properties. By successfully fabricating large quantities of uniform doubly-clamped suspended gold (Au) nanobeams with different thicknesses and nanograin sizes, we obtain full-spectrum mechanical features with statistical significance by combining atomic force microscopy (AFM) nanoindentation experiments, nonlinear theoretical model, and numerical simulations. The yield and breaking strengths of the Au nanobeams have a huge increase by nearly an order of magnitude compared with bulk Au and exhibit strong nonlinear effects, and the corresponding strong-yield ratio is up to 4, demonstrating extremely high strength reserve and vibration resistance. The strong-yield ratio gradually decreases with decreasing thickness, identifying a conversion of the failure type from ductile to brittle. Interestingly, the Hall–Petch relationship has been identified to be still valid at the nanoscale, and K in the equation reaches 4.8 Gpa·nm1/2, nearly twice of bulk nanocrystalline Au, which is ascribed to the coupling effect of nanocrystals and nanoscale thickness.

Electronic Supplementary Material

Download File(s)
12274_2023_6091_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Hall, E. O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. B 1951, 64, 747–753.

[2]

Petch, N. J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28.

[3]

Li, X. Y.; Jin, Z. H.; Zhou, X.; Lu, K. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains. Science 2020, 370, 831–836.

[4]

Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017, 355, 1292–1296.

[5]

Sun, L. G.; Wu, G.; Wang, Q.; Lu, J. Nanostructural metallic materials: Structures and mechanical properties. Mater. Today 2020, 38, 114–135.

[6]

Zhu, Y. T.; Liao, X. Z.; Wu, X. L. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 2012, 57, 1–62.

[7]

Greer, J. R.; De Hosson, J. T. M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 2011, 56, 654–724.

[8]

Pineau, A.; Amine Benzerga, A.; Pardoen, T. Failure of metals III: Fracture and fatigue of nanostructured metallic materials. Acta Mater. 2016, 107, 508–544.

[9]

Feruz, Y.; Mordehai, D. Towards a universal size-dependent strength of face-centered cubic nanoparticles. Acta Mater. 2016, 103, 433–441.

[10]

Kondo, M.; Shishido, N.; Kamiya, S.; Kubo, A.;Umeno, Y.; Ishikawa, Y.; Koshizaki, N. High-strength sub-micrometer spherical particles fabricated by pulsed laser melting in liquid. Part. Part. Syst. Charact. 2018, 35, 1800061.

[11]

Wu, B.; Heidelberg, A.; Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 2005, 4, 525–529.

[12]

Calahorra, Y.; Shtempluck, O.;Kotchetkov, V.; Yaish, Y. E. Young's modulus, residual stress, and crystal orientation of doubly clamped silicon nanowire beams. Nano Lett. 2015, 15, 2945–2950.

[13]

Gao, Y.; Sun, Y. J.; Zhang, T. Y. Highly reliable and efficient atomic force microscopy based bending test for assessing Young’s modulus of one-dimensional nanomaterials. Appl. Phys. Lett. 2016, 108, 123104.

[14]

Fang, Z.; Geng, Y. Q.; Wang, J. Q.;Yan, Y. D.; Zhang, G. X. Mechanical properties of gold nanowires prepared by nanoskiving approach. Nanoscale 2020, 12, 8194–8199.

[15]

Wang, X.; Zheng, S. X.; Shinzato, S.; Fang, Z. W.; He, Y.; Zhong, L.; Wang, C. M.; Ogata, S.; Mao, S. X. Atomistic processes of surface-diffusion-induced abnormal softening in nanoscale metallic crystals. Nat. Commun. 2021, 12, 5237.

[16]

Ramachandramoorthy, R.; Gao, W.; Bernal, R.; Espinosa, H. High strain rate tensile testing of silver nanowires: Rate-dependent brittle-to-ductile transition. Nano Lett. 2016, 16, 255–263.

[17]

Fu, L. B.; Kong, D. L.; Yang, C. P.; Teng, J.; Lu, Y.; Guo, Y. Z.; Yang, G.; Yan, X.; Liu, P.; Chen, M. W. et al. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire. J. Mater. Sci. Technol. 2022, 101, 95–106.

[18]

Liebig, J. P.; Mačković, M.; Spiecker, E.; Göken, M.; Merle, B. Grain boundary mediated plasticity: A blessing for the ductility of metallic thin films. Acta Mater. 2021, 215, 117079.

[19]

Yan, Y. K.; Zhao, Y.; Liu, Y. Q. Recent progress in organic field-effect transistor-based integrated circuits. J. Polym. Sci. 2022, 60, 311–327.

[20]

Deal, W.;Mei, X. B.; Leong, K. M. K. H.; Radisic, V.;Sarkozy, S.; Lai, R. THz monolithic integrated circuits using InP high electron mobility transistors. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 25–32.

[21]

Guo, S. Q.;Wu, K. J.; Li, C. P.; Wang, H.; Sun, Z.; Xi, D. W.; Zhang, S.; Ding, W. P.; Zaghloul, M. E.; Wang, C. N. et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021, 4, 969–985.

[22]

Gao, L.; Wang, J. F.; Zhao, Y.; Li, H. B.; Liu, M. C.; Ding, J. F.; Tian, H. H.; Guan, S. L.; Fang, Y. Free-standing nanofilm electrode arrays for long-term stable neural interfacings. Adv. Mater. 2022, 34, 2107343.

[23]

Wang, Y.; Liu, Q. H.; Zhang, J. M.; Hong, T. Z.; Sun, W. T.; Tang, L.; Arnold, E.; Suo, Z. G.; Hong, W.; Ren, Z. F. et al. Giant poisson’s effect for wrinkle-free stretchable transparent electrodes. Adv. Mater. 2019, 31, 1902955.

[24]

Li, P.; Zhang, Y. K.; Zheng, Z. J. Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: Principle, materials, printing, and devices. Adv. Mater. 2019, 31, 1902987.

[25]

Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

[26]

Erdogan, R. T.; Alkhaled, M.; Kaynak, B. E.; Alhmoud, H.; Pisheh, H. S.; Kelleci, M.; Karakurt, I.; Yanik, C.; Şen, Z. B.; Sari, B. et al. Atmospheric pressure mass spectrometry of single viruses and nanoparticles by nanoelectromechanical systems. ACS Nano 2022, 16, 3821–3833.

[27]

Xu, B.; Zhang, P. C.; Zhu, J. K.; Liu, Z. H.; Eichler, A.; Zheng, X. Q.; Lee, J.; Dash, A.; More, S.; Wu, S. et al. Nanomechanical resonators: Toward atomic scale. ACS Nano 2022, 16, 15545–15585.

[28]

Luo, J. X.; Liu, S.; Chen, P. J.; Chen, Y. P.; Zhong, J. L.; Wang, Y. P. Highly sensitive hydrogen sensor based on an optical driven nanofilm resonator. ACS Appl. Mater. Interfaces 2022, 14, 29357–29365.

[29]

Eom, K.; Park, H. S.; Yoon, D. S.; Kwon, T. Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. Phys. Rep. 2011, 503, 115–163.

[30]

Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater. 2000, 48, 1–29.

[31]

Meyers, M. A.; Mishra, A.; Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556.

[32]

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

[33]

Lee, G. H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerberg, A. G.; Lee, C.; Crawford, B.; Oliver, W. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 2013, 340, 1073–1076.

[34]

Sun, Y. F.; Wang, Y. J.; Wang, E. Z.; Wang, B. L.; Zhao, H. Y.; Zeng, Y. P.; Zhang, Q. H.; Wu, Y. H.; Gu, L.; Li, X. Y. et al. Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation. Nat. Commun. 2022, 13, 3898.

[35]

Patterson, A. L. The scherrer formula for X-Ray particle size determination. Phys. Rev. 1939, 56, 978–982.

[36]
Zhang, R.; Cheung, R. Mechanical properties and applications of two-dimensional materials. In Two-dimensional Materials-Synthesis, Characterization and Potential Applications. Nayak, P. K. , Ed.; IntechOpen: Rijeka, 2016.
[37]

Li, P.; You, Z.; Haugstad, G.; Cui, T. H. Graphene fixed-end beam arrays based on mechanical exfoliation. Appl. Phys. Lett. 2011, 98, 253105.

[38]

Dang, C. Q.; Chou, J. P.; Dai, B.; Chou, C. T.; Yang, Y.; Fan, R.; Lin, W. T.; Meng, F. L.; Hu, A.; Zhu, J. Q. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 2021, 371, 76–78.

[39]

Banerjee, A.; Bernoulli, D.; Zhang, H. T.; Yuen, M. F.; Liu, J. B.; Dong, J. C.; Ding, F.; Lu, J.; Dao, M.; Zhang, W. J. et al. Ultralarge elastic deformation of nanoscale diamond. Science 2018, 360, 300–302.

[40]

Yu, Q.; Zhang, J. Y.; Li, J.; Wang, T. Y.; Park, M.; He, Q. F.; Zhang, Z. B.; Liang, T.; Ding, X.; Li, Y. Y. et al. Strong, ductile, and tough nanocrystal-assembled freestanding gold nanosheets. Nano Lett. 2022, 22, 822–829.

[41]

Espinosa, H. D.; Prorok, B. C.; Peng, B. Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 2004, 52, 667–689.

[42]

Naik, S. N.; Walley, S. M. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 2020, 55, 2661–2681.

[43]

Cordero, Z. C.; Knight, B. E.; Schuh, C. A. Six decades of the Hall–Petch effect—A survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 2016, 61, 495–512.

[44]

Carlton, C. E.; Ferreira, P. J. What is behind the inverse Hall–Petch effect in nanocrystalline materials. Acta Mater. 2007, 55, 3749–3756.

[45]

Hahn, E. N.; Meyers, M. A. Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng. A 2015, 646, 101–134.

[46]

Sader, J. E.; Chon, J. W. M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969.

[47]

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

[48]

Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modelling Simul. Mater. Sci. Eng. 2010, 18, 015012.

Nano Research
Pages 13400-13408
Cite this article:
Ma L, Du L, Wang S, et al. Dimension-dependent mechanical features of Au-nanocrystalline nanofilms. Nano Research, 2023, 16(12): 13400-13408. https://doi.org/10.1007/s12274-023-6091-2
Topics:
Part of a topical collection:

659

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 02 June 2023
Revised: 11 August 2023
Accepted: 13 August 2023
Published: 08 September 2023
© Tsinghua University Press 2023
Return