AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pd cluster decorated free standing flexible cathode for high performance Li-oxygen batteries

Liang GuoGuoliang ZhangRuonan YangDongmei ZhangXiuqi ZhangHan YuXia LiFeng Dang( )
Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Show Author Information

Graphical Abstract

Pd decorated on flexible Te substrate to achieve synergistic catalysis and employed as a free-standing and flexible cathode to enhance the performance of the lithium-oxygen batteries (LOBs).

Abstract

As a promising candidate for the next generation energy storage system, rechargeable lithium-oxygen batteries (LOBs) still face substantial challenges caused by insulating discharge products that preclude their practical application. Exploring highly efficient cathode catalysts capable of facilitating formation/decomposition of discharge products is considered as an essential approach towards high performance LOBs. Herein, Pd decorated Te nanowires (Pd@Te NWs) were synthesized as advanced catalyst in LOBs to maximize Pd utilization and achieve synergistic effect, in which Pd clusters were uniformly grown on Te substrate though regulating the Pd:Te ratio. Meanwhile, Pd@Te nanowires assembled into an interpenetrating network-like structure by vacuum filtration and employed as flexible cathode, enabling LOBs achieved an ultralong 190 cycles stability and a superior specific capacity of 3.35 mAh·cm−2. Experimental studies and density functional theory (DFT) calculations reveal the excellent catalytic ability of Pd@Te and synergistic catalytic mechanism of Pd and Te, in which uniform electron distribution, extensive electron exchange, and large adsorption distance between Pd cluster and discharge products promote homogeneous adsorption/desorption of discharge products, while the high adsorption energy of Te substrate for Li species reduces the initial dynamical energy barrier during discharging process. The current work provides viable strategy to design composite catalysts for flexible cathode of LOBs with synergistic catalytic effects.

Electronic Supplementary Material

Download File(s)
12274_2023_6093_MOESM1_ESM.pdf (2.4 MB)

References

[1]

Gao, H. N.; Gallant, B. M. Advances in the chemistry and applications of alkali-metal-gas batteries. Nat. Rev. Chem. 2020, 4, 566–583.

[2]

Chi, X. W.; Li, M. L.; Di, J. C.; Bai, P.; Song, L. N.; Wang, X. X.; Li, F.; Liang, S.; Xu, J. J.; Yu, J. H. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021, 592, 551–557.

[3]

Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 2016, 1, 16128.

[4]

Lyu, Z. Y.; Zhou, Y.; Dai, W. R.; Cui, X. H.; Lai, M.; Wang, L.; Huo, F. W.; Huang, W.; Hu, Z.; Chen, W. Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries. Chem. Soc. Rev. 2017, 46, 6046–6072.

[5]

Chang, Z. W.; Xu, J. J.; Zhang, X. B. Recent progress in electrocatalyst for Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1700875.

[6]

Dang, C. C.; Mu, Q.; Xie, X. B.; Sun, X. Q.; Yang, X. Y.; Zhang, Y. P.; Maganti, S.; Huang, M. N.; Jiang, Q. L.; Seok, I. et al. Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: A review. Adv. Compos. Hybrid Mater. 2022, 5, 606–626.

[7]
Zheng, L. J.; Bai, P.; Yan, W. F.; Li, F.; Wang, X. X.; Xu, J. J. In situ construction of glass-fiber-directed zeolite microtube woven separator for ultra-high-capacity lithium-oxygen batteries. Matter 2023, 6, 142–157.
[8]

Yang, S. X.; He, P.; Zhou, H. S. Research progresses on materials and electrode design towards key challenges of Li-air batteries. Energy Storage Mater. 2018, 13, 29–48.

[9]

Shu, C. Z.; Wang, J. Z.; Long, J. P.; Liu, H. K.; Dou, S. X. Understanding the reaction chemistry during charging in aprotic lithium-oxygen batteries: Existing problems and solutions. Adv. Mater. 2019, 31, 1804587.

[10]

Wang, H. F.; Li, J. J.; Li, F.; Guan, D. H.; Wang, X. X.; Su, W. H.; Xu, J. J. Strategies with functional materials in tackling instability challenges of non-aqueous lithium-oxygen batteries. Chem. Res. Chin. Univ. 2021, 37, 232–245.

[11]

Wang, X. X.; Chi, X. W.; Li, M. L.; Guan, D. H.; Miao, C. L.; Xu, J. J. An integrated solid-state lithium-oxygen battery with highly stable anionic covalent organic frameworks electrolyte. Chem 2023, 9, 394–410.

[12]
Zhang, G. L.; Zhang, D. M.; Yang, R. N.; Du, Y.; Wang, N.; Guo, Z. H.; Mai, X. M.; Dang, F. A multifunctional wood-derived separator towards the problems of semi-open system in lithium-oxygen batteries. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202304981.
[13]

Xu, C. Y.; Ge, A. M.; Kannari, K.; Peng, B. X.; Xue, M.; Ding, B.; Inoue, K. I.; Zhang, X. G.; Ye, S. The decisive role of Li2O2 desorption for oxygen reduction reaction in Li-O2 batteries. ACS Energy Lett. 2023, 8, 1289–1299.

[14]

Shen, Z. Z.; Zhang, Y. Z.; Zhou, C.; Wen, R.; Wan, L. J. Revealing the correlations between morphological evolution and surface reactivity of catalytic cathodes in lithium-oxygen batteries. J. Am. Chem. Soc. 2021, 143, 21604–21612.

[15]

Liang, Z. J.; Wang, W. W.; Lu, Y. C. The path toward practical Li-air batteries. Joule 2022, 6, 2458–2473.

[16]

Guo, L.; Tan, L. W.; Xu, A. L.; Li, G. Y.; Zhang, G. L.; Liu, R. W.; Wang, J. C.; Du, Y.; Dang, F. Highly efficient two-dimensional Ag2Te cathode catalyst featuring a layer structure derived catalytic anisotropy in lithium-oxygen batteries. Energy Storage Mater. 2022, 50, 96–104.

[17]

Wang, Y.; Wang, X. X.; She, P.; Guan, D. H.; Song, L. N.; Xu, J. J. Nature-inspired three-dimensional Au/Spinach as a binder-free and self-standing cathode for high-performance Li-O2 batteries. Chem. Res. Chin. Univ. 2022, 38, 200–208.

[18]

Liu, C. J.; Younesi, R.; Tai, C. W.; Valvo, M.; Edström, K.; Gustafsson, T.; Zhu, J. F. 3D binder-free graphene foam as a cathode for high capacity Li-O2 batteries. J. Mater. Chem. A 2016, 4, 9767–9773.

[19]

Lu, Y. C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid State Lett. 2010, 13, A69.

[20]

Lim, H. D.; Song, H.; Gwon, H.; Park, K. Y.; Kim, J.; Bae, Y.; Kim, H.; Jung, S. K.; Kim, T.; Kim, Y. H. et al. A new catalyst-embedded hierarchical air electrode for high-performance Li-O2 batteries. Energy Environ. Sci. 2013, 6, 3570–3575.

[21]

Wen, Y. X.; Ding, S. J.; Ma, C. C.; Jia, P.; Tu, W.; Guo, Y. N.; Guo, S.; Zhou, W.; Zhang, X. Q.; Huang, J. Y. et al. In situ TEM visualization of Ag catalysis in Li-O2 nanobatteries. Nano Res. 2023, 16, 6833–6839.

[22]

Li, G. Y.; Li, N.; Peng, S. T.; He, B.; Wang, J.; Du, Y.; Zhang, W. B.; Han, K.; Dang, F. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium-oxygen batteries. Adv. Energy Mater. 2021, 11, 202002721.

[23]

Zhang, G. L.; Li, G. Y.; Wang, J.; Tong, H.; Wang, J. C.; Du, Y.; Sun, S. H.; Dang, F. 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li-oxygen batteries. Adv. Energy Mater. 2022, 12, 2103910.

[24]
Zhou, H. M.; Guo, L.; Zhang, R. H.; Xie, L.; Qiu, Y.; Zhang, G. L.; Guo, Z. H.; Kong, B.; Dang, F. Precise engineering of octahedron-induced subcrystalline CoMoO4 cathode catalyst for high-performance Li-air batteries. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202304154.
[25]

Qiu, Y.; Li, G. Y.; Zhou, H. M.; Zhang, G. L.; Guo, L.; Guo, Z. H.; Yang, R. N.; Fan, Y. Q.; Wang, W. L.; Du, Y. et al. Highly stable garnet Fe2Mo3O12 cathode boosts the lithium-air battery performance featuring a polyhedral framework and cationic vacancy concentrated surface. Adv. Sci. 2023, 10, 2300482.

[26]

Li, D. Y.; Zhao, L. L.; Wang, J.; Yang, C. P. Tailoring the d-band center over isomorphism pyrite catalyst for optimized intrinsic affinity to intermediates in lithium-oxygen batteries. Adv. Energy Mater. 2023, 13, 2204057.

[27]

He, B.; Li, G. Y.; Li, J. J.; Wang, J.; Tong, H.; Fan, Y. Q.; Wang, W. L.; Sun, S. H.; Dang, F. MoSe2@CNT core–shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium-oxygen batteries. Adv. Energy Mater. 2021, 11, 2003263.

[28]

Zhai, Y. J.; Tong, H.; Deng, J. L.; Li, G. Y.; Hou, Y.; Zhang, R. H.; Wang, J.; Lu, Y. Y.; Liang, K.; Chen, P. et al. Super-assembled atomic Ir catalysts on Te substrates with synergistic catalytic capability for Li-CO2 batteries. Energy Storage Mater. 2021, 43, 391–401.

[29]

Wang, H. F.; Li, J. F.; Li, F.; Li, J. J.; Xu, J. J. Facile route to constructing ternary nanoalloy bifunctional oxygen cathode for metal-air batteries. Chem. Res. Chin. Univ. 2020, 36, 1153–1160.

[30]

Zhao, W.; Wang, J.; Yin, R.; Li, B. Y.; Huang, X. S.; Zhao, L. L.; Qian, L. Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries. J. Colloid Interface Sci. 2020, 564, 28–36.

[31]

Hu, X. L.; Luo, G.; Zhao, Q. N.; Wu, D.; Yang, T. X.; Wen, J.; Wang, R. H.; Xu, C. H.; Hu, N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 2020, 142, 16776–16786.

[32]

Zhang, Y.; Zhang, S. T.; Ma, J. G.; Chen, X.; Nan, C. Y.; Chen, C. Single-atom-mediated spinel octahedral structures for elevated performances of Li-oxygen batteries. Angew. Chem., Int. Ed. 2023, 62, e202218926.

[33]

Hou, R. Z.; Gund, G. S.; Qi, K.; Nakhanivej, P.; Liu, H. F.; Li, F.; Xia, B. Y.; Park, H. S. Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Mater. 2019, 19, 212–241.

[34]

Zhou, J. W.; Cheng, J. L.; Wang, B.; Peng, H. S.; Lu, J. Flexible metal-gas batteries: A potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 2020, 13, 1933–1970.

[35]

Zhang, Y.; Wang, L.; Guo, Z. Y.; Xu, Y. F.; Wang, Y. G.; Peng, H. S. High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem., Int. Ed. 2016, 55, 4487–4491.

[36]

Li, Y. C.; Zhou, J. W.; Zhang, T. B.; Wang, T. S.; Li, X. L.; Jia, Y. F.; Cheng, J. L.; Guan, Q.; Liu, E. Z.; Peng, H. S. et al. Highly surface-wrinkled and N-doped CNTs anchored on metal wire: A novel fiber-shaped cathode toward high-performance flexible Li-CO2 batteries. Adv. Funct. Mater. 2019, 29, 1808117.

[37]

Shu, C. Z.; Long, J. P.; Dou, S. X.; Wang, J. Z. Component-interaction reinforced quasi-solid electrolyte with multifunctionality for flexible Li-O2 battery with superior safety under extreme conditions. Small 2019, 15, 1804701.

[38]

Wang, Y. K.; Yang, Q.; Zhao, Y.; Du, S. Y.; Zhi, C. Y. Recent advances in electrode fabrication for flexible energy-storage devices. Adv. Mater. Technol. 2019, 4, 1900083.

[39]

Wang, L.; Pan, J.; Zhang, Y.; Cheng, X. L.; Liu, L. M.; Peng, H. S. A Li-air battery with ultralong cycle life in ambient air. Adv. Mater. 2018, 30, 1704378.

[40]

Li, J. J.; Wang, Z. C.; Yang, L.; Liu, Y. H.; Xing, Y. L.; Zhang, S. C.; Xu, H. Z. A flexible Li-air battery workable under harsh conditions based on an integrated structure: A composite lithium anode encased in a gel electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 18627–18637.

[41]

Wang, X. X.; Guan, D. H.; Miao, C. L.; Kong, D. C.; Zheng, L. J.; Xu, J. J. Metal-organic framework-based mixed conductors achieve highly stable photo-assisted solid-state lithium-oxygen batteries. J. Am. Chem. Soc. 2023, 145, 5718–5729.

[42]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[43]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[44]

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[45]

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

[46]

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

[47]

Huang, Q. S.; Dang, F.; Zhu, H. T.; Zhao, L. L.; He, B.; Wang, Y.; Wang, J.; Mai, X. M. A hierarchical porous carbon supported Pd@Pd4S heterostructure as an efficient catalytic material positive electrode for Li-O2 batteries. J. Power Sources 2020, 451, 227738.

[48]

Gittleson, F. S.; Ryu, W. H.; Schwab, M.; Tong, X.; Taylor, A. D. Pt and Pd catalyzed oxidation of Li2O2 and DMSO during Li-O2 battery charging. Chem. Commun. 2016, 52, 6605–6608.

[49]

Cai, J. D.; Huang, Y. Y.; Guo, Y. L. PdTex/C nanocatalysts with high catalytic activity for ethanol electro-oxidation in alkaline medium. Appl. Catal. B Environ. 2014, 150–151, 230–237.

[50]

Wu, X.; Shao, Y.; Liu, H.; Feng, Z. L.; Wang, Y. L.; Sun, J. T.; Liu, C.; Wang, J. O.; Liu, Z. L.; Zhu, S. Y. et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407.

[51]

Wei, M. H.; Li, B.; Jin, C.; Ni, Y. C.; Li, C.; Pan, X. W.; Sun, J. W.; Yang, C. H.; Yang, R. Z. A 3D free-standing thin film based on N, P-codoped hollow carbon fibers embedded with MoP quantum dots as high efficient oxygen electrode for Li-O2 batteries. Energy Storage Mater. 2019, 17, 226–233.

[52]

Fan, W. G.; Wang, B. Z.; Guo, X. X.; Kong, X. Y.; Liu, J. J. Nanosize stabilized Li-deficient Li2−xO2 through cathode architecture for high performance Li-O2 batteries. Nano Energy 2016, 27, 577–586.

[53]

Ostadhossein, A.; Guo, J.; Simeski, F.; Ihme, M. Functionalization of 2D materials for enhancing OER/ORR catalytic activity in Li-oxygen batteries. Commun. Chem. 2019, 2, 95.

[54]

Wang, Z. Y.; Chen, X.; Shen, F.; Hang, X. G.; Niu, C. M. TiC MXene high energy density cathode for lithium-air battery. Adv. Theory Simul. 2018, 1, 1800059.

[55]

Kim, H. J.; Jung, S. C.; Han, Y. K.; Oh, S. H. An atomic-level strategy for the design of a low overpotential catalyst for Li-O2 batteries. Nano Energy 2015, 13, 679–686.

[56]

Choi, R.; Jung, J.; Kim, G.; Song, K.; Kim, Y. I.; Jung, S. C.; Han, Y. K.; Song, H.; Kang, Y. M. Ultra-low overpotential and high rate capability in Li-O2 batteries through surface atom arrangement of PdCu nanocatalysts. Energy Environ. Sci. 2014, 7, 1362–1368.

Nano Research
Pages 2678-2686
Cite this article:
Guo L, Zhang G, Yang R, et al. Pd cluster decorated free standing flexible cathode for high performance Li-oxygen batteries. Nano Research, 2024, 17(4): 2678-2686. https://doi.org/10.1007/s12274-023-6093-0
Topics:

653

Views

3

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 09 July 2023
Revised: 03 August 2023
Accepted: 13 August 2023
Published: 26 September 2023
© Tsinghua University Press 2023
Return