AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modulating the alloying mode in the doping-induced synthesis of Au-Pd nanowires

Hui Jin1Xiaoliang Wei1Lecheng Zhao1Jialong Yu1Qiao Pan1Shumin Li1Qian Wang2Zhaotong Yuan1Dan Yang1Donghui Zhao1Hongyu Chen2,3Yawen Wang1( )
Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
School of Science, Westlake University, Hangzhou 310064, China
Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310064, China
Show Author Information

Graphical Abstract

Au-Pd nanowires with various morphologies and structures were synthesized via a doping-induced approach, with the alloying modes systematically modulated by the reduction kinetics and the surface ligands. The Au-Pd nanowires were characterized as enhanced electrocatalysts for oxygen reduction and ethanol oxidation.

Abstract

Heterogeneous doping is one effective strategy for synthesizing metal alloy nanowires. Herein, the heterogeneous doping processes of Pd on the ultrathin Au nanowires were systematically modulated and investigated. Au-Pd alloy nanowires with various morphologies and lattice structures can be obtained by adjusting the morphology of the precursor Au nanowires and the kinetics of the heterogeneous doping processes. The effects of the rate of Pd reduction and the concentration of the ligand oleylamine (OAm) on the Pd deposition and alloying mode were articulated. Generally, as the Pd deposition rate decreases, the Pd deposition and alloying mode switches from the island-forming Stransky–Krastanov (SK) mode to the epitaxial Frank-van der Merwe (FM) mode, and eventually to an unconventional twisting alloying mode, where the interdiffusion of Pd and Au causes drastic rearrangement of the lattice structure and formation of helical structures. The kinetics-related variation of alloying mode could also be observed in the Au-Ag nanowires, demonstrating a general design principle for the synthesis of alloy nanostructures. In addition, the electrocatalytic performance of various Au-Pd nanowires was evaluated, and the alloy nanowire formed via the SK mode was found to be an excellent electrocatalyst for oxygen reduction and ethanol oxidation.

Electronic Supplementary Material

Download File(s)
12274_2023_6095_MOESM1_ESM.pdf (5 MB)

References

[1]

Li, S. M.; Jin, H.; Wang, Y. W. Recent progress on the synthesis of metal alloy nanowires as electrocatalysts. Nanoscale 2023, 15, 2488–2515.

[2]

Qu, C. M.; Yu, X.; Xu, Y.; Zhang, S. C.; Liu, H. Y.; Zhang, Y. L.; Huang, K.; Lv, L. F. A sensing and display system on wearable fabric based on patterned silver nanowires. Nano Energy 2022, 104, 107965.

[3]

Zhuang, X. J.; Ning, C. Z.; Pan, A. L. Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater. 2012, 24, 13–33.

[4]

Tang, B.; Hu, Y. J.; Lu, J.; Dong, H. X.; Mou, N. L.; Gao, X. Y.; Wang, H.; Jiang, X. W.; Zhang, L. Energy transfer and wavelength tunable lasing of single perovskite alloy nanowire. Nano Energy 2020, 71, 104641.

[5]

Chu, X. X.; Wang, K.; Qian, W. Y.; Xu, H. Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coord. Chem. Rev. 2023, 477, 214952.

[6]

Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.

[7]

Li, D. Y.; Podlaha, E. J. Template-assisted electrodeposition of porous Fe-Ni-Co nanowires with vigorous hydrogen evolution. Nano Lett. 2019, 19, 3569–3574.

[8]

You, H. M.; Gao, F.; Wang, C.; Li, J.; Zhang, K. W.; Zhang, Y. P.; Du, Y. K. Rich grain boundaries endow networked PdSn nanowires with superior catalytic properties for alcohol oxidation. Nanoscale 2021, 13, 17939–17944.

[9]

Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.

[10]

Jin, Z. Y.; Lyu, J.; Zhao, Y. L.; Li, H. L.; Lin, X.; Xie, G. Q.; Liu, X. J.; Kai, J. J.; Qiu, H. J. Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn-Air batteries. ACS Mater. Lett. 2020, 2, 1698–1706.

[11]

Chen, C. Y.; Xu, H.; Shang, H. Y.; Jin, L. J.; Song, T. X.; Wang, C.; Gao, F.; Zhang, Y. P.; Du, Y. K. Ultrafine PtCuRh nanowire catalysts with alleviated poisoning effect for efficient ethanol oxidation. Nanoscale 2019, 11, 20090–20095.

[12]

Cheng, N.; Zhang, L.; Zhou, Y. J.; Yu, S. W.; Chen, L. Y.; Jiang, H. B.; Li, C. Z. A general carbon monoxide-assisted strategy for synthesizing one-nanometer-thick Pt-based nanowires as effective electrocatalysts. J. Colloid Interface Sci. 2020, 572, 170–178.

[13]

Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.

[14]

Niu, Z. Q.; Chen, S. P.; Yu, Y.; Lei, T.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Morphology-controlled transformation of Cu@Au core–shell nanowires into thermally stable Cu3Au intermetallic nanowires. Nano Res. 2020, 13, 2564–2569.

[15]

Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p–d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.

[16]

Gao, L.; Yang, Z. L.; Sun, T. L.; Tan, X.; Lai, W. C.; Li, M. F.; Kim, J.; Lu, Y. F.; Choi, S. I.; Zhang, W. H. et al. Autocatalytic surface reduction-assisted synthesis of PtW ultrathin alloy nanowires for highly efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103943.

[17]

Tan, C. L.; Chen, J. Z.; Wu, X. J.; Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 2018, 3, 17089.

[18]

Wu, Z. P.; Shan, S. Y.; Zang, S. Q.; Zhong, C. J. Dynamic core–shell and alloy structures of multimetallic nanomaterials and their catalytic synergies. Acc. Chem. Res. 2020, 53, 2913–2924.

[19]

Sperling, R. A.; Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1333–1383.

[20]

Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4897.

[21]

Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880.

[22]

Feng, H. J.; Yang, Y. M.; You, Y. M.; Li, G. P.; Guo, J.; Yu, T.; Shen, Z. X.; Wu, T.; Xing, B. G. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem. Commun. (Camb.) 2009, 2009, 1984–1986.

[23]

Lu, Y.; Cheng, X. J.; Li, H. Y.; Zhao, J. L.; Wang, W. Y.; Wang, Y. W.; Chen, H. Y. Braiding ultrathin Au nanowires into ropes. J. Am. Chem. Soc. 2020, 142, 10629–10633.

[24]

Chen, Y.; Wang, Y. W.; Peng, J.; Xu, Q. C.; Weng, J.; Xu, J. Assembly of ultrathin gold nanowires: From polymer analogue to colloidal block. ACS Nano 2017, 11, 2756–2763.

[25]

Wang, Y.; Wang, Q. X.; Sun, H.; Zhang, W. Q.; Chen, G.; Wang, Y. W.; Shen, X. S.; Han, Y.; Lu, X. M.; Chen, H. Y. Chiral transformation: From single nanowire to double helix. J. Am. Chem. Soc. 2011, 133, 20060–20063.

[26]

Velázquez-Salazar, J. J.; Esparza, R.; Mejía-Rosales, S. J.; Estrada-Salas, R.; Ponce, A.; Deepak, F. L.; Castro-Guerrero, C.; José-Yacamán, M. Experimental evidence of icosahedral and decahedral packing in one-dimensional nanostructures. ACS Nano 2011, 5, 6272–6278.

[27]

Feng, Y. H.; He, J. T.; Wang, H.; Tay, Y. Y.; Sun, H.; Zhu, L. F.; Chen, H. Y. An unconventional role of ligand in continuously tuning of metal–metal interfacial strain. J. Am. Chem. Soc. 2012, 134, 2004–2007.

[28]

Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

[29]

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

[30]

Wang, J. C.; Qiu, X. Y.; Su, K. Y.; Wang, S. Y.; Li, J. T.; Tang, Y. W. Breaking the lattice match of Pd on Au (111) nanowires: Manipulating the island and epitaxial growth pathways to boost the oxygen reduction reactivity. J. Mater. Chem. A 2020, 8, 19300–19308.

[31]

He, G. Y.; Wang, R. X.; Fan, J.; Liu, S.; Chen, H. Y. In silico investigation on the twisting of gold nanowires. Mater. Today Commun. 2022, 33, 104319.

[32]

Xu, J.; Wang, Y. W.; Qi, X. Y.; Liu, C. C.; He, J. T.; Zhang, H.; Chen, H. Y. Preservation of lattice orientation in coalescing imperfectly aligned gold nanowires by a zipper mechanism. Angew. Chem., Int. Ed. 2013, 52, 6019–6023.

[33]

Yang, G. X.; Namin, L. M.; Deskins, N. A.; Teng, X. W. Influence of *OH adsorbates on the potentiodynamics of the CO2 generation during the electro-oxidation of ethanol. J. Catal. 2017, 353, 335–348.

Nano Research
Pages 3334-3343
Cite this article:
Jin H, Wei X, Zhao L, et al. Modulating the alloying mode in the doping-induced synthesis of Au-Pd nanowires. Nano Research, 2024, 17(4): 3334-3343. https://doi.org/10.1007/s12274-023-6095-y
Topics:

791

Views

2

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 27 June 2023
Revised: 07 August 2023
Accepted: 14 August 2023
Published: 13 October 2023
© Tsinghua University Press 2023
Return