Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The tunable mid-infrared source in a broad-spectrum heralds great scientific implications and remains a challenge. Nano-localized catalytic combustion facilitates access to customizable infrared light sources. Here, we report on fabricating platinum-alumina bilayer nano-cylinder arrays for methanol catalytic combustion, which enables them to act as an array of infrared point light sources, with wavelength tunable by controlling the flow rate of methanol/air mixture. We then propose a technique of integrating nanophotonic structures with catalytic combustion to engineer infrared light emission. We demonstrate a prototype of a topological photonic crystal catalyst array in which infrared emission can be enhanced significantly with highly vertical emission. This work establishes a framework of nanophotonic catalytic combustion for infrared light sources.
Gaida, C.; Gebhardt, M.; Heuermann, T.; Stutzki, F.; Jauregui, C.; Antonio-Lopez, J.; Schülzgen, A.; Amezcua-Correa, R.; Tünnermann, A.; Pupeza, I. et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation. Light Sci. Appl. 2018, 7, 94.
Inoue, T.; Zoysa, M. D.; Asano, T.; Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 2014, 13, 928–931.
Baranov, D. G.; Xiao, Y. Z.; Nechepurenko, I. A.; Krasnok, A.; Alù, A.; Kats, M. A. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 2019, 18, 920–930.
Jung, D.; Bank, S.; Lee, M. L.; Wasserman, D. Next-generation mid-infrared sources. J. Opt. 2017, 19, 123001.
Stanley, R. Plasmonics in the mid-infrared. Nat. Photonics 2012, 6, 409–411.
Greffet, J. J.; Carminati, R.; Joulain, K.; Mulet, J. P.; Mainguy, S.; Chen, Y. Coherent emission of light by thermal sources. Nature 2002, 416, 61–64.
Park, J.; Kang, J. H.; Liu, X. G.; Maddox, S. J.; Tang, K. C.; McIntyre, P. C.; Bank, S. R.; Brongersma, M. L. Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Sci. Adv. 2018, 4, eaat3163.
Wei, J. X.; Ren, Z. H.; Lee, C. Metamaterial technologies for miniaturized infrared spectroscopy: Light sources, sensors, filters, detectors, and integration. J. Appl. Phys. 2020, 128, 240901.
Baffou, G.; Berto, P.; Ureña, E. B.; Quidant, R.; Monneret, S.; Polleux, J.; Rigneault, H. Photoinduced heating of nanoparticle arrays. ACS Nano 2013, 7, 6478–6488.
Vaskin, A.; Kolkowski, R.; Koenderink, A. F.; Staude, I. Light-emitting metasurfaces. Nanophotonics 2019, 8, 1151–1198.
Bullock, R. M.; Chen, J. G.; Gagliardi, L.; Chirik, P. J.; Farha, O. K.; Hendon, C. H.; Jones, C. W.; Keith, J. A.; Klosin, J.; Minteer, S. D. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 2020, 369, eabc3183.
Poerwoprajitno, A. R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H. A.; Henson, A.; Subhash, B.; Bedford, N. M. et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 2022, 5, 231–237.
Antolini, E. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review. Appl. Catal. B Environ. 2018, 237, 491–503.
Yang, J.; Liu, Y. X.; Deng, J. G.; Xie, S. H.; Hou, Z. Q.; Zhao, X. T.; Zhang, K. F.; Han, Z.; Dai, H. X. PtxCo/meso-MnOy: Highly efficient catalysts for low-temperature methanol combustion. Catal. Today 2019, 332, 168–176.
Yu, W. T.; Porosoff, M. D.; Chen, J. G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780–5817.
Mitchell, S.; Qin, R. X.; Zheng, N. F.; Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 2021, 16, 129–139.
He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.
Jacobs, P. W.; Ribeiro, F. H.; Somorjai, G. A.; Wind, S. J. New model catalysts: Uniform platinum cluster arrays produced by electron beam lithography. Catal. Lett. 1996, 37, 131–136.
Zhu, J.; Somorjai, G. A. Formation of platinum silicide on a platinum nanoparticle array model catalyst deposited on silica during chemical reaction. Nano Lett. 2001, 1, 8–13.
Grunes, J.; Zhu, J.; Anderson, E. A.; Somorjai, G. A. Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface. J. Phys. Chem. B 2002, 106, 11463–11468.
Hu, Z. Y.; Boiadjiev, V.; Thundat, T. Nanocatalytic spontaneous ignition and self-supporting room-temperature combustion. Energy Fuels 2005, 19, 855–858.
Luo, X.; Zeng, Z. G.; Wang, X. H.; Xiao, J. H.; Gan, Z. X.; Wu, H.; Hu, Z. Y. Preparing two-dimensional Nano-catalytic combustion patterns using direct inkjet printing. J. Power Sources 2014, 271, 174–179.
Yang, G.; Wu, Z. M.; Wang, W.; Zhang, Z. Y.; Hu, Z. Y. Creating 20 nm thin patternable flat fire. Nano Energy 2017, 42, 195–204.
Wu, Z. H.; Zhang, S.; Liu, Z. K.; Mu, E. Z.; Hu, Z. Y. Thermoelectric converter: Strategies from materials to device application. Nano Energy 2022, 91, 106692.
Xiao, J. H.; Wang, X. H.; Luo, X.; Hu, Z. Y. In situ preparation of catalytic combustion films used as micro heat source by inkjet printing method. Appl. Surf. Sci. 2015, 327, 400–405.
Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149.
Lin, D. M.; Fan, P. Y.; Hasman, E.; Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 2014, 345, 298–302.
Yu, N. F.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337.
Dyachenko, P. N.; Molesky, S.; Petrov, A. Y.; Störmer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; Eich, M. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 2016, 7, 11809.
Zhang, W. B.; Wang, B. X.; Zhao, C. Y. Selective thermophotovoltaic emitter with aperiodic multilayer structures designed by machine learning. ACS Appl. Energy Mater. 2021, 4, 2004–2013.
Rahm, J. M.; Tiburski, C.; Rossi, T. P.; Nugroho, F. A. A.; Nilsson, S.; Langhammer, C.; Erhart, P. A library of late transition metal alloy dielectric functions for nanophotonic applications. Adv. Funct. Mater. 2020, 30, 2002122.
Huang, X. Y.; Tang, C.; Li, J. Q.; Chen, L. C.; Zheng, J. T.; Zhang, P.; Le, J. B.; Li, R. H.; Li, X. H.; Liu, J. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.
Shaik, S.; Danovich, D.; Joy, J.; Wang, Z. F.; Stuyver, T. Electric-field mediated chemistry: Uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 2020, 142, 12551–12562.
Rupprechter, G.; Eppler, A. S.; Avoyan, A.; Somorjai, G. A. Nanoparticle arrays as model catalysts: Microstructure, thermal stability and reactivity of Pt/SiO2 and Ag/Al2O3 fabricated by electron beam lithography. Stud. Surf. Sci. Catal. 2000, 130, 215–220.
Lu, L.; Joannopoulos, J. D.; Soljačić, M. Topological photonics. Nat. Photonics 2014, 8, 821–829.
Ozawa, T.; Price, H. M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M. C.; Schuster, D.; Simon, J.; Zilberberg, O. et al. Topological photonics. Rev. Mod. Phys. 2019, 91, 015006.
Qu, Y. R.; Pan, M. Y.; Qiu, M. Directional and spectral control of thermal emission and its application in radiative cooling and infrared light sources. Phys. Rev. Appl. 2020, 13, 064052.