AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanophotonic catalytic combustion enlightens mid-infrared light source

Zhenhua Wu1,2,3Zhimao Wu4Haoran Lv5Wenbin Zhang3Zekun Liu1,2Shuai Zhang1,2Erzhen Mu4,6Hengxin Lin4Qing Zhang5( )Daxiang Cui7Thomas Thundat8Zhiyu Hu1( )
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Institute of NanoMicroEnergy, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, New York 14260, USA
Show Author Information

Graphical Abstract

This work establishes a framework of nanophotonic catalytic combustion to tailor infrared light sources.

Abstract

The tunable mid-infrared source in a broad-spectrum heralds great scientific implications and remains a challenge. Nano-localized catalytic combustion facilitates access to customizable infrared light sources. Here, we report on fabricating platinum-alumina bilayer nano-cylinder arrays for methanol catalytic combustion, which enables them to act as an array of infrared point light sources, with wavelength tunable by controlling the flow rate of methanol/air mixture. We then propose a technique of integrating nanophotonic structures with catalytic combustion to engineer infrared light emission. We demonstrate a prototype of a topological photonic crystal catalyst array in which infrared emission can be enhanced significantly with highly vertical emission. This work establishes a framework of nanophotonic catalytic combustion for infrared light sources.

Electronic Supplementary Material

Download File(s)
12274_2023_6097_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Gaida, C.; Gebhardt, M.; Heuermann, T.; Stutzki, F.; Jauregui, C.; Antonio-Lopez, J.; Schülzgen, A.; Amezcua-Correa, R.; Tünnermann, A.; Pupeza, I. et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation. Light Sci. Appl. 2018, 7, 94.

[2]

Inoue, T.; Zoysa, M. D.; Asano, T.; Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 2014, 13, 928–931.

[3]

Baranov, D. G.; Xiao, Y. Z.; Nechepurenko, I. A.; Krasnok, A.; Alù, A.; Kats, M. A. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 2019, 18, 920–930.

[4]

Jung, D.; Bank, S.; Lee, M. L.; Wasserman, D. Next-generation mid-infrared sources. J. Opt. 2017, 19, 123001.

[5]

Stanley, R. Plasmonics in the mid-infrared. Nat. Photonics 2012, 6, 409–411.

[6]

Greffet, J. J.; Carminati, R.; Joulain, K.; Mulet, J. P.; Mainguy, S.; Chen, Y. Coherent emission of light by thermal sources. Nature 2002, 416, 61–64.

[7]

Park, J.; Kang, J. H.; Liu, X. G.; Maddox, S. J.; Tang, K. C.; McIntyre, P. C.; Bank, S. R.; Brongersma, M. L. Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Sci. Adv. 2018, 4, eaat3163.

[8]

Wei, J. X.; Ren, Z. H.; Lee, C. Metamaterial technologies for miniaturized infrared spectroscopy: Light sources, sensors, filters, detectors, and integration. J. Appl. Phys. 2020, 128, 240901.

[9]

Baffou, G.; Berto, P.; Ureña, E. B.; Quidant, R.; Monneret, S.; Polleux, J.; Rigneault, H. Photoinduced heating of nanoparticle arrays. ACS Nano 2013, 7, 6478–6488.

[10]
Baffou, G. Gold nanoparticles as nanosources of heat. Photoniques 2018, 42–47.
[11]

Vaskin, A.; Kolkowski, R.; Koenderink, A. F.; Staude, I. Light-emitting metasurfaces. Nanophotonics 2019, 8, 1151–1198.

[12]

Bullock, R. M.; Chen, J. G.; Gagliardi, L.; Chirik, P. J.; Farha, O. K.; Hendon, C. H.; Jones, C. W.; Keith, J. A.; Klosin, J.; Minteer, S. D. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 2020, 369, eabc3183.

[13]

Poerwoprajitno, A. R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H. A.; Henson, A.; Subhash, B.; Bedford, N. M. et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 2022, 5, 231–237.

[14]

Antolini, E. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review. Appl. Catal. B Environ. 2018, 237, 491–503.

[15]

Yang, J.; Liu, Y. X.; Deng, J. G.; Xie, S. H.; Hou, Z. Q.; Zhao, X. T.; Zhang, K. F.; Han, Z.; Dai, H. X. PtxCo/meso-MnOy: Highly efficient catalysts for low-temperature methanol combustion. Catal. Today 2019, 332, 168–176.

[16]

Yu, W. T.; Porosoff, M. D.; Chen, J. G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780–5817.

[17]

Mitchell, S.; Qin, R. X.; Zheng, N. F.; Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 2021, 16, 129–139.

[18]

He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

[19]

Jacobs, P. W.; Ribeiro, F. H.; Somorjai, G. A.; Wind, S. J. New model catalysts: Uniform platinum cluster arrays produced by electron beam lithography. Catal. Lett. 1996, 37, 131–136.

[20]

Zhu, J.; Somorjai, G. A. Formation of platinum silicide on a platinum nanoparticle array model catalyst deposited on silica during chemical reaction. Nano Lett. 2001, 1, 8–13.

[21]

Grunes, J.; Zhu, J.; Anderson, E. A.; Somorjai, G. A. Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface. J. Phys. Chem. B 2002, 106, 11463–11468.

[22]

Hu, Z. Y.; Boiadjiev, V.; Thundat, T. Nanocatalytic spontaneous ignition and self-supporting room-temperature combustion. Energy Fuels 2005, 19, 855–858.

[23]
Hu, Z. Y.; Thundat, T. Nanoscale energy conversion by using Nano-catalytic particles. In Proceeding of the ASME 2006 Power Conference, Atlanta, Georgia, USA, 2006, pp 545–550.
[24]

Luo, X.; Zeng, Z. G.; Wang, X. H.; Xiao, J. H.; Gan, Z. X.; Wu, H.; Hu, Z. Y. Preparing two-dimensional Nano-catalytic combustion patterns using direct inkjet printing. J. Power Sources 2014, 271, 174–179.

[25]

Yang, G.; Wu, Z. M.; Wang, W.; Zhang, Z. Y.; Hu, Z. Y. Creating 20 nm thin patternable flat fire. Nano Energy 2017, 42, 195–204.

[26]

Wu, Z. H.; Zhang, S.; Liu, Z. K.; Mu, E. Z.; Hu, Z. Y. Thermoelectric converter: Strategies from materials to device application. Nano Energy 2022, 91, 106692.

[27]

Xiao, J. H.; Wang, X. H.; Luo, X.; Hu, Z. Y. In situ preparation of catalytic combustion films used as micro heat source by inkjet printing method. Appl. Surf. Sci. 2015, 327, 400–405.

[28]

Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143–149.

[29]

Lin, D. M.; Fan, P. Y.; Hasman, E.; Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 2014, 345, 298–302.

[30]

Yu, N. F.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337.

[31]
Palik, E. D. Handbook of Optical Constants of Solids; Elsevier: Amsterdam, 1997.
[32]

Dyachenko, P. N.; Molesky, S.; Petrov, A. Y.; Störmer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; Eich, M. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 2016, 7, 11809.

[33]

Zhang, W. B.; Wang, B. X.; Zhao, C. Y. Selective thermophotovoltaic emitter with aperiodic multilayer structures designed by machine learning. ACS Appl. Energy Mater. 2021, 4, 2004–2013.

[34]

Rahm, J. M.; Tiburski, C.; Rossi, T. P.; Nugroho, F. A. A.; Nilsson, S.; Langhammer, C.; Erhart, P. A library of late transition metal alloy dielectric functions for nanophotonic applications. Adv. Funct. Mater. 2020, 30, 2002122.

[35]

Huang, X. Y.; Tang, C.; Li, J. Q.; Chen, L. C.; Zheng, J. T.; Zhang, P.; Le, J. B.; Li, R. H.; Li, X. H.; Liu, J. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.

[36]

Shaik, S.; Danovich, D.; Joy, J.; Wang, Z. F.; Stuyver, T. Electric-field mediated chemistry: Uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 2020, 142, 12551–12562.

[37]

Rupprechter, G.; Eppler, A. S.; Avoyan, A.; Somorjai, G. A. Nanoparticle arrays as model catalysts: Microstructure, thermal stability and reactivity of Pt/SiO2 and Ag/Al2O3 fabricated by electron beam lithography. Stud. Surf. Sci. Catal. 2000, 130, 215–220.

[38]

Lu, L.; Joannopoulos, J. D.; Soljačić, M. Topological photonics. Nat. Photonics 2014, 8, 821–829.

[39]

Ozawa, T.; Price, H. M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M. C.; Schuster, D.; Simon, J.; Zilberberg, O. et al. Topological photonics. Rev. Mod. Phys. 2019, 91, 015006.

[40]

Qu, Y. R.; Pan, M. Y.; Qiu, M. Directional and spectral control of thermal emission and its application in radiative cooling and infrared light sources. Phys. Rev. Appl. 2020, 13, 064052.

Nano Research
Pages 11564-11570
Cite this article:
Wu Z, Wu Z, Lv H, et al. Nanophotonic catalytic combustion enlightens mid-infrared light source. Nano Research, 2023, 16(9): 11564-11570. https://doi.org/10.1007/s12274-023-6097-9
Topics:
Part of a topical collection:

730

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 January 2023
Revised: 12 August 2023
Accepted: 14 August 2023
Published: 23 August 2023
© Tsinghua University Press 2023
Return