AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Plasma-etching on monolithic MOFs-based MIM filter boosted chemical sensing

Jianxi Liu1,2( )Li Feng1,2Zhihuan Li1,2Yang Wu3,4Feng Zhou3,4Yadong Xu1( )
Research & Development Institute, Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Show Author Information

Graphical Abstract

A monolithic metal-organic frameworks (MOFs)-based Metal-insulator-metal (MIM) cavity with high color saturation is constructed by sandwiching MOFs film generated by optimized layer-by-layer (LbL) spin-coating method between the gold layers. Reflected color is modulated by optimizing the MOFs thickness. Plasma etching on the cavity allows external chemical diffusion, which realizes the breakthrough enhancement of detection sensitivity. Patterned structure of the cavity is generated via the plasma-mask method to produce a controllable structure color change for chemical sensing.

Abstract

Metal-insulator-metal (MIM) cavity as a lithography-free structure to control light transmission and reflection has great potential in the field of optical sensing. However, the dense top metal layer of the MIM prohibits any external medium from entering the dielectric insulation layer, which limits the application of the cavity in the sensing field. Herein, we demonstrate a series of monolithic metal-organic frameworks (MOFs) based MIM cavities, which are treated by plasma etching to provide channels for chemical diffusion and to advance sensing. We modulate the bandwidth of the MIM filters by controlling the MOF thickness as insulator layers. Oxygen plasma-etching is applied to build channels on the top metal layer without altering their saturation and brightness for chemical sensing performance. The etching time regulates the number and size of channels on the top metal layer. Sensing behavior is demonstrated on the plasma-etched MOFs-based MIM cavity when external chemicals diffuse in the cavity. In addition, we generate patterned structure of the MOFs-based MIM cavity via plasma-mask method, which can transfer to different substrates and produce a controllable structure color change for chemical sensing. Our MIM cavity may promote the advancement and applications of structural color in security imaging, color display, information anticounterfeiting, and color printing.

Electronic Supplementary Material

Download File(s)
12274_2023_6098_MOESM1_ESM.pdf (5.3 MB)

References

[1]

Haffner, C.; Chelladurai, D.; Fedoryshyn, Y.; Josten, A.; Baeuerle, B.; Heni, W.; Watanabe, T.; Cui, T.; Cheng, B. J.; Saha, S. et al. Low-loss plasmon-assisted electro-optic modulator. Nature 2018, 556, 483–486.

[2]

Mansha, S.; Moitra, P.; Xu, X. W.; Mass, T. W. W.; Veetil, R. M.; Liang, X. N.; Li, S. Q.; Paniagua-Domínguez, R.; Kuznetsov, A. I. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci. Appl. 2022, 11, 141.

[3]

Xue, X. T.; Fan, Y. H.; Segal, E.; Wang, W. P.; Yang, F.; Wang, Y. F.; Zhao, F. T.; Fu, W. Y.; Ling, Y. H.; Salomon, A. et al. Periodical concentration of surface plasmon polaritons by wave interference in metallic film with nanocavity array. Mater. Today 2021, 46, 54–61.

[4]

Zhu, W. Q.; Xu, T.; Wang, H. Z.; Zhang, C.; Deotare, P. B.; Agrawal, A.; Lezec, H. J. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator. Sci. Adv. 2017, 3, e1700909.

[5]

Allison, G.; Sana, A. K.; Ogawa, Y.; Kato, H.; Ueno, K.; Misawa, H.; Hayashi, K.; Suzuki, H. A Fabry-Pérot cavity coupled surface plasmon photodiode for electrical biomolecular sensing. Nat. Commun. 2021, 12, 6483.

[6]

Li, Z. Y.; Butun, S.; Aydin, K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2015, 2, 183–188.

[7]

Jung, C.; Kim, S. J.; Jang, J.; Ko, J. H.; Kim, D.; Ko, B.; Song, Y. M.; Hong, S. H.; Rho, J. Disordered-nanoparticle-based etalon for ultrafast humidity-responsive colorimetric sensors and anticounterfeiting displays. Sci. Adv. 2022, 8, eabm8598.

[8]

Xie, X. K.; Fang, Y. X.; Lu, C.; Tao, Y.; Yin, L.; Zhang, Y. B.; Wang, Z. X.; Wang, S. Y.; Zhao, J. W.; Tu, X. et al. Effective interfacial energy band engineering strategy toward high-performance triboelectric nanogenerator. Chem. Eng. J. 2023, 452, 139469.

[9]

Jung, C.; Kim, G.; Jeong, M.; Jang, J.; Dong, Z. G.; Badloe, T.; Yang, J. K. W.; Rho, J. Metasurface-driven optically variable devices. Chem. Rev. 2021, 121, 13013–13050.

[10]

Li, Z. H.; Liu, J. X.; Feng, L.; Pan, Y.; Tang, J.; Li, H.; Cheng, G. H.; Li, Z. Y.; Shi, J. Q.; Xu, Y. D. et al. Monolithic MOF-based metal-insulator-metal resonator for filtering and sensing. Nano Lett. 2023, 23, 637–644.

[11]

Li, Z. H.; Liu, J. X.; Feng, L.; Liu, X.; Xu, Y. D.; Zhou, F.; Liu, W. M. Coupling tandem MOFs in metal-insulator-metal resonator advanced chemo-sieving sensing. Nano Today 2023, 48, 101726.

[12]

Daqiqeh Rezaei, S.; Ho, J.; Wang, T.; Ramakrishna, S.; Yang, J. K. W. Direct color printing with an electron beam. Nano Lett. 2020, 20, 4422–4429.

[13]

Kim, S. J.; Choi, H. K.; Lee, H.; Hong, S. H. Solution-processable nanocrystal-based broadband Fabry-Perot absorber for reflective vivid color generation. ACS Appl. Mater. Interfaces 2019, 11, 7280–7287.

[14]

Ordinario, D. D.; Jinno, H.; Nayeem, M. O. G.; Tachibana, Y.; Yokota, T.; Someya, T. Stretchable structural color filters based on a metal-insulator-metal structure. Adv. Opt. Mater. 2018, 6, 1800851.

[15]

Yan, Y.; Liu, L.; Cai, Z. H.; Xu, J. W.; Xu, Z.; Zhang, D.; Hu, X. B. Plasmonic nanoparticles tuned thermal sensitive photonic polymer for biomimetic chameleon. Sci. Rep. 2016, 6, 31328.

[16]

Zhao, J. C.; Qiu, M.; Yu, X. C.; Yang, X. M.; Jin, W.; Lei, D. Y.; Yu, Y. T. Defining deep-subwavelength-resolution, wide-color-gamut, and large-viewing-angle flexible subtractive colors with an ultrathin asymmetric Fabry-Perot lossy cavity. Adv. Opt. Mater. 2019, 7, 1900646.

[17]

ElKabbash, M.; Sreekanth, K. V.; Alapan, Y.; Kim, M.; Cole, J.; Fraiwan, A.; Letsou, T.; Li, Y. D.; Guo, C. L.; Sankaran, R. M. et al. Hydrogen sensing using thin-film perfect light absorber. ACS Photonics 2019, 6, 1889–1894.

[18]

Wang, Z. J.; Dai, C. J.; Zhang, J.; Wang, D. D.; Shi, Y. Y.; Wang, X. Y.; Zheng, G. X.; Zhang, X. F.; Li, Z. Y. Real-time tunable nanoprinting-multiplexing with simultaneous meta-holography displays by stepwise nanocavities. Adv. Funct. Mater. 2022, 32, 2110022.

[19]
Ma, Q. L.; Yin, P. F.; Zhao, M. T.; Luo, Z. Y.; Huang, Y.; He, Q. Y.; Yu, Y. F.; Liu, Z. Q.; Hu, Z. N.; Chen, B. et al. MOF-based hierarchical structures for solar-thermal clean water production. Adv. Mater. 2019, 31, 1808249.
[20]

Jang, J.; Kang, K.; Raeis-Hosseini, N.; Ismukhanova, A.; Jeong, H.; Jung, C.; Kim, B.; Lee, J. Y.; Park, I.; Rho, J. Self-powered humidity sensor using chitosan-based plasmonic metal-hydrogel-metal filters. Adv. Opt. Mater. 2020, 8, 1901932.

[21]

Medishetty, R.; Zaręba, J. K.; Mayer, D.; Samoć, M.; Fischer, R. A. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4976–5004.

[22]

Burtch, N. C.; Heinen, J.; Bennett, T. D.; Dubbeldam, D.; Allendorf, M. D. Mechanical properties in metal-organic frameworks: Emerging opportunities and challenges for device functionality and technological applications. Adv. Mater. 2018, 30, 1704124.

[23]

Qi, X. Y.; Liu, K. X.; Chang, Z. Y. Beyond powders: Monoliths on the basis of metal-organic frameworks (MOFs). Chem. Eng. J. 2022, 441, 135953.

[24]

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

[25]

Shen, H. M.; Wang, X.; Huang, H.; Liu, Q. P.; Lv, D.; She, Y. B. Staged oxidation of hydrocarbons with simultaneously enhanced conversion and selectivity employing O2 as oxygen source catalyzed by 2D metalloporphyrin-based MOFs possessing bimetallic active centers. Chem. Eng. J. 2022, 443, 136126.

[26]

Ma, Z. Z.; Li, Q. H.; Wang, Z. R.; Gu, Z. G.; Zhang, J. Electrically regulating nonlinear optical limiting of metal-organic framework film. Nat. Commun. 2022, 13, 6347.

[27]

Zhou, H.; Han, J. J.; Cuan, J.; Zhou, Y. Responsive luminescent MOF materials for advanced anticounterfeiting. Chem. Eng. J. 2022, 431, 134170.

[28]

Jian, Y. Y.; Hu, W. W.; Zhao, Z. H.; Cheng, P. F.; Haick, H.; Yao, M. S.; Wu, W. W. Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 2020, 12, 71.

[29]

Lee, W. K.; Odom, T. W. Designing hierarchical nanostructures from conformable and deformable thin materials. ACS Nano 2019, 13, 6170–6177.

[30]

Kou, D. H.; Ma, W.; Zhang, S. F.; Li, R.; Zhang, Y. BTEX vapor detection with a flexible MOF and functional polymer by means of a composite photonic crystal. ACS Appl. Mater. Interfaces 2020, 12, 11955–11964.

[31]

Liu, J.; Qu, M. Y.; Wang, C. R.; Xue, Y. M.; Huang, H.; Chen, Q. M.; Sun, W. J.; Zhou, X. W.; Xu, G. H.; Jiang, X. A dual-cross-linked hydrogel patch for promoting diabetic wound healing. Small 2022, 18, 2106172.

[32]

Hu, W. W.; Wu, W. W.; Jian, Y. Y.; Haick, H.; Zhang, G. J.; Qian, Y.; Yuan, M. M.; Yao, M. S. Volatolomics in healthcare and its advanced detection technology. Nano Res. 2022, 15, 8185–8213.

[33]

Kim, H. T.; Hwang, W.; Liu, Y.; Yu, M. Ultracompact gas sensor with metal-organic-framework-based differential fiber-optic Fabry-Perot nanocavities. Opt. Express 2020, 28, 29937–29947.

[34]

Dai, G.; Wang, L.; Cheng, S. J.; Chen, Y.; Liu, X.; Deng, L. G.; Zhong, H. Z. Perovskite quantum dots based optical Fabry-Pérot pressure sensor. ACS Photonics 2020, 7, 2390–2394.

[35]

von Mankowski, A.; Szendrei-Temesi, K.; Koschnick, C.; Lotsch, B. V. Improving analyte selectivity by post-assembly modification of metal-organic framework based photonic crystal sensors. Nanoscale Horiz. 2018, 3, 383–390.

[36]

Haldar, R.; Wöll, C. Hierarchical assemblies of molecular frameworks-MOF-on-MOF epitaxial heterostructures. Nano Res. 2021, 14, 355–368.

[37]

Haldar, R.; Heinke, L.; Wöll, C. Advanced photoresponsive materials using the metal-organic framework approach. Adv. Mater. 2020, 32, 1905227.

[38]

Liu, J. X.; Wang, W. J.; Wang, D. Q.; Hu, J. T.; Ding, W. D.; Schaller, R. D.; Schatz, G. C.; Odom, T. W. Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays. Proc. Natl. Acad. Sci. USA 2019, 116, 5925–5930.

[39]

Li, Z. H.; Liu, J. X.; Yi, X. B.; Wu, W.; Li, F. F.; Zhu, Z. K.; Li, H. Q.; Shi, J. Q.; Xu, Y. D.; Zhou, F. et al. Metal-organic frameworks-based Fabry-Pérot cavity encapsulated TiO2 nanoparticles for selective chemical sensing. Adv. Funct. Mater. 2022, 32, 2109541.

[40]

Heinke, L.; Wöll, C. Surface-mounted metal-organic frameworks: Crystalline and porous molecular assemblies for fundamental insights and advanced applications. Adv. Mater. 2019, 31, 1806324.

[41]

Sun, H.; Liu, J. X.; Zhou, C.; Yang, W. H.; Liu, H.; Zhang, X.; Li, Z. H.; Zhang, B. B.; Jie, W. Q.; Xu, Y. D. Enhanced transmission from visible to terahertz in ZnTe crystals with scalable subwavelength structures. ACS Appl. Mater. Interfaces 2021, 13, 16997–17005.

[42]

Liu, J. X.; Redel, E.; Walheim, S.; Wang, Z. B.; Oberst, V.; Liu, J. X.; Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T. et al. Monolithic high performance surface anchored metal-organic framework bragg reflector for optical sensing. Chem. Mater. 2015, 27, 1991–1996.

[43]

Park, J.; In, S.; Park, N. Dispersion-controlled gold-aluminum-silicon dioxide-aluminum nanopawn structures for visible to NIR light modulation. Adv. Mater. 2021, 33, 2007831.

[44]

Neubrech, F.; Duan, X. Y.; Liu, N. Dynamic plasmonic color generation enabled by functional materials. Sci. Adv. 2020, 6, eabc2709.

[45]

Kim, J.; Oh, H.; Seo, M.; Lee, M. Generation of reflection colors from metal-insulator-metal cavity structure enabled by thickness-dependent refractive indices of metal thin film. ACS Photonics 2019, 6, 2342–2349.

[46]

Li, Z. H.; Liu, J. X.; Wu, H. Z.; Tang, J.; Li, Z. Y.; Xu, Y. D.; Zhou, F.; Liu, W. M. Photonic crystals constructed by isostructural metal-organic framework films. Nano Res. 2023, 16, 9569–9576.

[47]

Das, C. M.; Guo, Y.; Poenar, D. P.; Ramaswamy, Y.; Xiong, J. Q.; Yin, M. J.; Yong, K. T. In-depth conceptual study of an enhanced plasmonic sensing system using antireflective coatings and perovskites for the detection of infectious viral antigens. ACS Appl. Electron. Mater. 2022, 4, 1732–1740.

[48]

Ji, C.; Zhang, Z. B.; Omotosho, K. D.; Berman, D.; Lee, B.; Divan, R.; Guha, S.; Shevchenko, E. V. Porous but mechanically robust all-inorganic antireflective coatings synthesized using polymers of intrinsic microporosity. ACS Nano 2022, 16, 14754–14764.

Nano Research
Pages 2800-2807
Cite this article:
Liu J, Feng L, Li Z, et al. Plasma-etching on monolithic MOFs-based MIM filter boosted chemical sensing. Nano Research, 2024, 17(4): 2800-2807. https://doi.org/10.1007/s12274-023-6098-8
Topics:

1091

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 07 July 2023
Revised: 02 August 2023
Accepted: 13 August 2023
Published: 26 September 2023
© Tsinghua University Press 2023
Return