AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction

Xue Miao1,2Hanxiao Yang1,2Zekun Li2,3Meifei Cheng1,2Yilin Zhao2,3Lingyu Wan1( )Aifang Yu1,2,3( )Junyi Zhai1,2,3( )
Center on NanoEnergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Beijing Institute of Nano Energy and Nano Systems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Engineering, University of Chinese Academy of Science, Beijing 101408, China
Show Author Information

Graphical Abstract

The introduction of drive rods with a hollow acrylic spherical shell to transfer wave energy enables the columnar multi-layer sliding-triboelectric nanogenerator (CMLS-TENG) to produce output at wave heights of 1.2 cm and ensures that the CMLS-TENG can work in wave directions from 0° to 360°. Meanwhile, the multi-layer TENG produced in this paper allows for improved space utilisation.

Abstract

The ocean, with its highly variable and complex meteorological conditions, harbors enormous renewable resources. Triboelectric nanogenerators (TENGs), which possess unique advantages, show exciting prospects in water wave energy collection. How to design and optimize TENGs to cover all characteristic water wave energies and achieve efficient energy utilization is emergent. In this paper, we carefully designed and fabricated a columnar multi-layer sliding TENG (CMLS-TENG) that can harvest water wave energy independent of wave height and direction. Drive rods with a hollow acrylic spherical shell were introduced to deliver wave energy, ensuring that the CMLS-TENG can work in all directions from 0° to 360°. Based on the sliding structure, switching the optimized CMLS-TENG is independent of wave heights. The optimized CMLS-TENG can achieve a total power density of 730 mW/m3 at a wave height of only 4.8 cm regardless of wave direction, which can illuminate multiple light-emitting diodes (LEDs) to provide lighting and provide power to a watch and a hygrometer for temperature and humidity monitoring. This work provides new choices and hopes for the effective collection of full-range water wave energy.

Electronic Supplementary Material

Download File(s)
12274_2023_6100_MOESM1_ESM.pdf (735.6 KB)

References

[1]

Zou, C. N.; Ma, F.; Pan, S. Q.; Lin, M. J.; Zhang, G. S.; Xiong, B.; Wang, Y.; Liang, Y. B.; Yang, Z. Earth energy evolution, human development and carbon neutral strategy. Petrol. Explor. Dev. 2022, 49, 468–488.

[2]

Borthwick, A. G. L. Marine renewable energy seascape. Engineering 2016, 2, 69–78.

[3]

Omer, A. M. Energy, environment and sustainable development. Renew. Sustainable Energy Rev. 2008, 12, 2265–2300.

[4]

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

[5]

Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

[6]

Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

[7]

Wang, J.; Li, X. H.; Zi, Y. L.; Wang, S. H.; Li, Z. L.; Zheng, L.; Yi, F.; Li, S. M.; Wang, Z. L. A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 2015, 27, 4830–4836.

[8]

Walden, R.; Kumar, C.; Mulvihill, D. M.; Pillai, S. C. Opportunities and challenges in triboelectric nanogenerator (TENG) based sustainable energy generation technologies: A mini-review. Chem. Eng. J. Adv. 2022, 9, 100237.

[9]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[10]

Song, C. H.; Zhu, X.; Wang, M. L.; Yang, P.; Chen, L. K.; Hong, L.; Cui, W. C. Recent advances in ocean energy harvesting based on triboelectric nanogenerators. Sustainable Energy Technol. Assess. 2022, 53, 102767.

[11]

Wang, X. F.; Niu, S. M.; Yin, Y. J.; Yi, F.; You, Z.; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.

[12]

Wen, Z.; Guo, H. Y.; Zi, Y. L.; Yeh, M. H.; Wang, X.; Deng, J. N.; Wang, J.; Li, S. M.; Hu, C. G.; Zhu, L. P. et al. Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator. ACS Nano 2016, 10, 6526–6534.

[13]

Li, X. Y.; Tao, J.; Wang, X. D.; Zhu, J.; Pan, C. F.; Wang, Z. L. Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 2018, 8, 1800705.

[14]

Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031–6037.

[15]

Zhao, X. J.; Kuang, S. Y.; Wang, Z. L.; Zhu, G. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 2018, 12, 4280–4285.

[16]

Li, X. Y.; Tao, J.; Zhu, J.; Pan, C. F. A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications. APL Mater. 2017, 5, 074104.

[17]

Xu, M. Y.; Wang, S.; Zhang, S. L.; Ding, W. B.; Kien, P. T.; Wang, C.; Li, Z.; Pan, X. X.; Wang, Z. L. A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy 2019, 57, 574–580.

[18]

Cheng, P.; Guo, H. Y.; Wen, Z.; Zhang, C. L.; Yin, X.; Li, X. Y.; Liu, D.; Song, W. X.; Sun, X. H.; Wang, J. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439.

[19]

Liu, G. L.; Guo, H. Y.; Xu, S. X.; Hu, C. G.; Wang, Z. L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 2019, 9, 1900801.

[20]

Liang, X.; Jiang, T.; Liu, G. X.; Feng, Y. W.; Zhang, C.; Wang, Z. L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285.

[21]

Yang, X. D.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J. J.; Chen, J.; Wang, Z. L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 2019, 60, 404–412.

[22]

Lee, K.; Lee, J. W.; Kim, K.; Yoo, D.; Kim, D. S.; Hwang, W.; Song, I.; Sim, J. Y. A spherical hybrid triboelectric nanogenerator for enhanced water wave energy harvesting. Micromachines (Basel) 2018, 9, 598.

[23]

Xiao, T. X.; Jiang, T.; Zhu, J. X.; Liang, X.; Xu, L.; Shao, J. J.; Zhang, C. L.; Wang, J.; Wang, Z. L. Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl. Mater. Interfaces 2018, 10, 3616–3623.

[24]

Xiao, T. X.; Liang, X.; Jiang, T.; Xu, L.; Shao, J. J.; Nie, J. H.; Bai, Y.; Zhong, W.; Wang, Z. L. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 2018, 28, 1802634.

[25]

Li, R.; Zhang, H.; Wang, L.; Liu, G. H. A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations. Sensors (Basel) 2021, 21, 1514.

[26]

Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836.

[27]

Zhang, C. G.; Liu, L.; Zhou, L. L.; Yin, X.; Wei, X. L.; Hu, Y. X.; Liu, Y. B.; Chen, S. Y.; Wang, J.; Wang, Z. L. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator. ACS Nano 2020, 14, 7092–7100.

[28]

Saadatnia, Z.; Asadi, E.; Askari, H.; Esmailzadeh, E.; Naguib, H. E. A heaving point absorber-based triboelectric-electromagnetic wave energy harvester: An efficient approach toward blue energy. Int. J. Energy Res. 2018, 42, 2431–2447.

[29]

Wu, Y.; Zeng, Q. X.; Tang, Q.; Liu, W. L.; Liu, G. L.; Zhang, Y.; Wu, J.; Hu, C. G.; Wang, X. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 2020, 67, 104205.

[30]

Sánchez-Arcilla, A.; González-Marco, D.; Bolaños, R. A review of wave climate and prediction along the Spanish Mediterranean coast. Nat. Hazards Earth Syst. Sci. 2008, 8, 1217–1228.

[31]

Yang, B.; Yang, Y. F.; Yang, Z. L.; Feng, X.; Ye, Q.; Yu, L. L.; Ou, J. Wave characteristics in a semi-enclosed offshore windfarm influenced by East Asian monsoon and extreme weather: A study of central Hangzhou Bay, China. Ocean Dynam. 2021, 71, 1011–1031.

[32]

Shen, F.; Li, Z. J.; Guo, H. Y.; Yang, Z. B.; Wu, H.; Wang, M.; Luo, J.; Xie, S. R.; Peng, Y.; Pu, H. Y. Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators. Adv. Electron. Mater. 2021, 7, 2100277.

[33]

Liang, X.; Liu, S. J.; Yang, H. B.; Jiang, T. Triboelectric nanogenerators for ocean wave energy harvesting: Unit integration and network construction. Electronics 2023, 12, 225.

[34]

Zhang, C. G.; He, L. X.; Zhou, L. L.; Yang, O.; Yuan, W.; Wei, X. L.; Liu, Y. B.; Lu, L.; Wang, J.; Wang, Z. L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623.

[35]

Wen, H. G.; Yang, P. Y.; Liu, G. L.; Xu, S. X.; Yao, H. L.; Li, W. T.; Qu, H.; Ding, J. J.; Li, J. Y.; Wan, L. Y. Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy 2022, 93, 106796.

[36]

Feng, Y. W.; Jiang, T.; Liang, X.; An, J.; Wang, Z. L. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 2020, 7, 021401.

[37]

Zhang, D. S.; Song, W. Z.; Wu, L. X.; Li, C. L.; Chen, T.; Sun, D. J.; Zhang, M.; Zhang, T. T.; Zhang, J.; Ramakrishna, S. et al. The influence of in-plane electrodes on TENG’s output and its application in the field of IoT intelligent sensing. Nano Energy 2023, 110, 108313.

Nano Research
Pages 3029-3034
Cite this article:
Miao X, Yang H, Li Z, et al. A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction. Nano Research, 2024, 17(4): 3029-3034. https://doi.org/10.1007/s12274-023-6100-5
Topics:

932

Views

6

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 11 June 2023
Revised: 02 August 2023
Accepted: 16 August 2023
Published: 21 October 2023
© Tsinghua University Press 2023
Return