AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bifunctional core–shell co-catalyst for boosting photocatalytic CO2 reduction to CH4

Fangxu Dai1Mingming Zhang1Jishu Han1( )Zhenjiang Li2Shouhua Feng1Jun Xing1( )Lei Wang1,3( )
Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao 266042, China
Show Author Information

Graphical Abstract

Herein, an all-in-one functional absorbable sponges (HCNPs) with hemostatic effect was constructed by integrating PP-Dox/Lap (doxorubicin (Dox) and lapatinib (Lap) synergistic delivery nanoparticles) into thiolated hyaluronic acid (HA-SH) and collagen I cross-linked hydrogel for effective preventing post-resection recurrence as well as distant metastasis. The functional HCNPs sponge might provide a safer and more effective strategy for postoperative treatment of cancer.

Abstract

Solar-light-driven CO2 reduction CO to CH4 and C2H6 is a complex process involving multiple elementary reactions and energy barriers. Therefore, achieving high CH4 activity and selectivity remains a significant challenge. Here, we integrate bifunctional Cu2O and Cu-MOF (MOF = metal-organic framework) core–shell co-catalysts (Cu2O@Cu-MOF) with semiconductor TiO2. Experiments and theoretical calculations demonstrate that Cu2O (Cu+ facilitates charge separation) and Cu-MOF (Cu2+ improves the CO2 adsorption and activation) in the core–shell structure have a synergistic effect on photocatalytic CO2 reduction, reducing the formation barrier of the key intermediate *COOH and *CHO. The photocatalyst exhibits high CH4 yield (366.0 μmol·g−1·h−1), efficient electron transfer (3283 μmol·g−1·h−1) and hydrocarbon selectivity (95.5%), which represents the highest activity of Cu-MOF-based catalysts in photocatalytic CO2 reduction reaction. This work provides a strategy for designing efficient photocatalysts from the perspective of precise regulation of components.

Electronic Supplementary Material

Download File(s)
12274_2023_6107_MOESM1_ESM.pdf (5.8 MB)

References

[1]

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

[2]

Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

[3]

Zu, X. L.; Zhao, Y.; Li, X. D.; Chen, R. H.; Shao, W. W.; Wang, Z. Q.; Hu, J.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets. Angew. Chem., Int. Ed. 2021, 60, 13840–13846.

[4]

Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.

[5]

Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 2019, 48, 1972–2010.

[6]

Wang, K.; Du, Y.; Li, Y.; Wu, X. Y.; Hu, H. Y.; Wang, G. H.; Xiao, Y.; Chou, S. L.; Zhang, G. K. Atomic-level insight of sulfidation-engineered Aurivillius-related Bi2O2SiO3 nanosheets enabling visible light low-concentration CO2 conversion. Carbon Energy 2023, 5, e264.

[7]

Dai, F. X.; Zhang, M. M.; Chen, Q.; Mi, M. Z.; Li, Z. J.; Han, J. S.; Xing, J.; Feng, S. H.; Wang, L. Highly efficient CO2 photoreduction by ultralow-Ru-loading ZIF-67. Appl. Catal. B Environ. 2023, 336, 122934.

[8]

Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.

[9]

Liang, Y. J.; Wu, X.; Liu, X. Y.; Li, C. H.; Liu, S. W. Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active centers. Appl. Catal. B Environ. 2022, 304, 120978.

[10]

Wu, X.; Zhong, R. Y.; Lv, X. D.; Hu, Z. F.; Xia, D. H.; Li, C. H.; Song, B.; Liu, S. W. Modulating g-C3N4-based van der Waals heterostructures with spatially separated reductive centers for tandem photocatalytic CO2 methanation. Appl. Catal. B Environ. 2023, 330, 122666.

[11]

Yuliati, L.; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592–1602.

[12]

Hong, S.; Abbas, H. G.; Jang, K.; Patra, K. K.; Kim, B.; Choi, B. U.; Song, H.; Lee, K. S.; Choi, P. P.; Ringe, S. et al. Tuning the C1/C2 selectivity of electrochemical CO2 reduction on Cu-CeO2 nanorods by oxidation state control. Adv. Mater. 2023, 35, 2370051.

[13]

Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.

[14]

Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

[15]

Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

[16]

Qin, J. N.; Wang, S. B.; Wang, X. C. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B Environ. 2017, 209, 476–482.

[17]

Ezugwu, C. I.; Liu, S. W.; Li, C. H.; Zhuiykov, S.; Roy, S.; Verpoort, F. Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coord. Chem. Rev. 2022, 450, 214245.

[18]

Li, X.; He, W. M.; Li, C. H.; Song, B.; Liu, S. W. Synergetic surface modulation of ZnO/Pt@ZIF-8 hybrid nanorods for enhanced photocatalytic CO2 valorization. Appl. Catal. B Environ. 2021, 287, 119934.

[19]

Sui, J. F.; Liu, H.; Hu, S. J.; Sun, K.; Wan, G.; Zhou, H.; Zheng, X.; Jiang, H. L. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv. Mater. 2022, 34, 2109203.

[20]

Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.

[21]

Deng, X.; Li, R.; Wu, S. K.; Wang, L.; Hu, J. H.; Ma, J.; Jiang, W. B.; Zhang, N.; Zheng, X. S.; Gao, C. et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 10924–10929.

[22]

Wang, L.; Jin, P. X.; Duan, S. H.; She, H. D.; Huang, J. W.; Wang, Q. Z. In-situ incorporation of copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 2019, 64, 926–933.

[23]

Zhang, M.; Lu, M.; Lang, Z. L.; Liu, J.; Liu, M.; Chang, J. N.; Li, L. Y.; Shang, L. J.; Wang, M.; Li, S. L. et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew. Chem., Int. Ed. 2020, 59, 6500–6506.

[24]

Albolkany, M. K.; Wang, Y.; Li, W. J.; Arooj, S.; Chen, C. H.; Wu, N. N.; Wang, Y.; Zbořil, R.; Fischer, R. A.; Liu, B. Dual-function HKUST-1: Templating and catalyzing formation of graphitic carbon nitride quantum dots under mild conditions. Angew. Chem., Int. Ed. 2020, 59, 21499–21504.

[25]

Tan, Y. C.; Zeng, H. C. Defect creation in HKUST-1 via molecular imprinting: Attaining anionic framework property and mesoporosity for cation exchange applications. Adv. Funct. Mater. 2017, 27, 1703765.

[26]

Wan, L. L.; Zhou, Q. X.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J. L.; Yan, X. L.; Xia, M. K.; Li, Y. F. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889–898.

[27]

Yi, J.; Xie, R.; Xie, Z.; Chai, G.; Liu, T.; Chen, R.; Huang, Y.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

[28]

Zang, Y. P.; Liu, T. F.; Wei, P. F.; Li, H. F.; Wang, Q.; Wang, G. X.; Bao, X. H. Selective CO2 electroreduction to ethanol over a carbon-coated CuOx catalyst. Angew. Chem., Int. Ed. 2022, 61, e202209629.

[29]

Deng, Z. S.; Hu, S. C.; Ji, J. H.; Wu, S. Q.; Xie, H. J.; Xing, M. Y.; Zhang, J. L. Deep insight of the influence of Cu valence states in co-catalyst on CO2 photoreduction. Appl. Catal. B Environ. 2022, 316, 121621.

[30]

Dai, F. X.; Zhang, M. M.; Mi, M. Z.; Li, Z. J.; Xing, J.; Wang, L. Pt-surface oxygen vacancies coupling accelerated photo-charge extraction and activated hydrogen evolution. Nano Res. 2023, 16, 4736–4741.

[31]

Dong, X. A.; Cui, Z. H.; Sun, Y. J.; Dong, F. Humidity-independent photocatalytic toluene mineralization benefits from the utilization of edge hydroxyls in layered double hydroxides (LDHs): A combined operando and theoretical investigation. ACS Catal. 2021, 11, 8132–8139.

[32]

Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y. F.; Liu, J.; Li, S. L.; Lan, Y. Q. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat. Commun. 2022, 13, 4681.

[33]

Mondal, I.; Pal, U. Synthesis of MOF templated Cu/CuO@TiO2 nanocomposites for synergistic hydrogen production. Phys. Chem. Chem. Phys. 2016, 18, 4780–4788.

[34]

Kong, Z. C.; Liao, J. F.; Dong, Y. J.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Core@Shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662.

[35]

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

[36]

Dai, F. X.; Guo, Z. Y.; Zhao, W. J.; Li, Z. J.; Xing, J.; Wang, L. Interfacial engineering boosting charge extraction for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 450, 138015.

[37]

Xiao, M.; Zhang, L.; Luo, B.; Lyu, M. Q.; Wang, Z. L.; Huang, H. M.; Wang, S. C.; Du, A. J.; Wang, L. Z. Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 7230–7234.

[38]

Ma, Y. J.; Yi, X. X.; Wang, S. L.; Li, T.; Tan, B. E.; Chen, C. C.; Majima, T.; Waclawik, E. R.; Zhu, H. Y.; Wang, J. Y. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nat. Commun. 2022, 13, 1400.

[39]

Zhu, K.; Zhu, Q.; Jiang, M.; Zhang, Y.; Shao, Z.; Geng, Z.; Wang, X.; Zeng, H.; Wu, X.; Zhang, W. et al. Modulating Ti t2g orbital occupancy in a Cu/TiO2 composite for selective photocatalytic CO2 reduction to CO. Angew. Chem., Int. Ed. 2022, 61, e202207600.

[40]

Shen, J. C.; Luo, C. H.; Qiao, S. S.; Chen, Y. Q.; Tang, Y. H.; Xu, J. Q.; Fu, K. X.; Yuan, D. W.; Tang, H. F.; Zhang, H. et al. Single-atom Cu channel and N-vacancy engineering enables efficient charge separation and transfer between C3N4 interlayers for boosting photocatalytic hydrogen production. ACS Catal. 2023, 13, 6280–6288.

[41]

Zhang, X.; Matras-Postolek, K.; Yang, P.; Jiang, S. P. Z-scheme WOx/Cu-g-C3N4 heterojunction nanoarchitectonics with promoted charge separation and transfer towards efficient full solar-spectrum photocatalysis. J. Colloid Interface Sci. 2023, 636, 646–656.

[42]

Huang, Q.; Niu, Q.; Li, X. F.; Liu, J.; Sun, S. N.; Dong, L. Z.; Li, S. L.; Cai, Y. P.; Lan, Y. Q. Demystifying the roles of single metal site and cluster in CO2 reduction via light and electric dual-responsive polyoxometalate-based metal-organic frameworks. Sci. Adv. 2022, 8, eadd5598.

Nano Research
Pages 1259-1266
Cite this article:
Dai F, Zhang M, Han J, et al. Bifunctional core–shell co-catalyst for boosting photocatalytic CO2 reduction to CH4. Nano Research, 2024, 17(3): 1259-1266. https://doi.org/10.1007/s12274-023-6107-y
Topics:

688

Views

14

Crossref

11

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 28 May 2023
Revised: 12 August 2023
Accepted: 16 August 2023
Published: 14 October 2023
© Tsinghua University Press 2023
Return