Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Solar-light-driven CO2 reduction CO to CH4 and C2H6 is a complex process involving multiple elementary reactions and energy barriers. Therefore, achieving high CH4 activity and selectivity remains a significant challenge. Here, we integrate bifunctional Cu2O and Cu-MOF (MOF = metal-organic framework) core–shell co-catalysts (Cu2O@Cu-MOF) with semiconductor TiO2. Experiments and theoretical calculations demonstrate that Cu2O (Cu+ facilitates charge separation) and Cu-MOF (Cu2+ improves the CO2 adsorption and activation) in the core–shell structure have a synergistic effect on photocatalytic CO2 reduction, reducing the formation barrier of the key intermediate *COOH and *CHO. The photocatalyst exhibits high CH4 yield (366.0 μmol·g−1·h−1), efficient electron transfer (3283 μmol·g−1·h−1) and hydrocarbon selectivity (95.5%), which represents the highest activity of Cu-MOF-based catalysts in photocatalytic CO2 reduction reaction. This work provides a strategy for designing efficient photocatalysts from the perspective of precise regulation of components.
Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.
Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.
Zu, X. L.; Zhao, Y.; Li, X. D.; Chen, R. H.; Shao, W. W.; Wang, Z. Q.; Hu, J.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets. Angew. Chem., Int. Ed. 2021, 60, 13840–13846.
Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.
Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 2019, 48, 1972–2010.
Wang, K.; Du, Y.; Li, Y.; Wu, X. Y.; Hu, H. Y.; Wang, G. H.; Xiao, Y.; Chou, S. L.; Zhang, G. K. Atomic-level insight of sulfidation-engineered Aurivillius-related Bi2O2SiO3 nanosheets enabling visible light low-concentration CO2 conversion. Carbon Energy 2023, 5, e264.
Dai, F. X.; Zhang, M. M.; Chen, Q.; Mi, M. Z.; Li, Z. J.; Han, J. S.; Xing, J.; Feng, S. H.; Wang, L. Highly efficient CO2 photoreduction by ultralow-Ru-loading ZIF-67. Appl. Catal. B Environ. 2023, 336, 122934.
Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.
Liang, Y. J.; Wu, X.; Liu, X. Y.; Li, C. H.; Liu, S. W. Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active centers. Appl. Catal. B Environ. 2022, 304, 120978.
Wu, X.; Zhong, R. Y.; Lv, X. D.; Hu, Z. F.; Xia, D. H.; Li, C. H.; Song, B.; Liu, S. W. Modulating g-C3N4-based van der Waals heterostructures with spatially separated reductive centers for tandem photocatalytic CO2 methanation. Appl. Catal. B Environ. 2023, 330, 122666.
Yuliati, L.; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592–1602.
Hong, S.; Abbas, H. G.; Jang, K.; Patra, K. K.; Kim, B.; Choi, B. U.; Song, H.; Lee, K. S.; Choi, P. P.; Ringe, S. et al. Tuning the C1/C2 selectivity of electrochemical CO2 reduction on Cu-CeO2 nanorods by oxidation state control. Adv. Mater. 2023, 35, 2370051.
Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.
Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.
Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.
Qin, J. N.; Wang, S. B.; Wang, X. C. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B Environ. 2017, 209, 476–482.
Ezugwu, C. I.; Liu, S. W.; Li, C. H.; Zhuiykov, S.; Roy, S.; Verpoort, F. Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coord. Chem. Rev. 2022, 450, 214245.
Li, X.; He, W. M.; Li, C. H.; Song, B.; Liu, S. W. Synergetic surface modulation of ZnO/Pt@ZIF-8 hybrid nanorods for enhanced photocatalytic CO2 valorization. Appl. Catal. B Environ. 2021, 287, 119934.
Sui, J. F.; Liu, H.; Hu, S. J.; Sun, K.; Wan, G.; Zhou, H.; Zheng, X.; Jiang, H. L. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv. Mater. 2022, 34, 2109203.
Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.
Deng, X.; Li, R.; Wu, S. K.; Wang, L.; Hu, J. H.; Ma, J.; Jiang, W. B.; Zhang, N.; Zheng, X. S.; Gao, C. et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 10924–10929.
Wang, L.; Jin, P. X.; Duan, S. H.; She, H. D.; Huang, J. W.; Wang, Q. Z. In-situ incorporation of copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 2019, 64, 926–933.
Zhang, M.; Lu, M.; Lang, Z. L.; Liu, J.; Liu, M.; Chang, J. N.; Li, L. Y.; Shang, L. J.; Wang, M.; Li, S. L. et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew. Chem., Int. Ed. 2020, 59, 6500–6506.
Albolkany, M. K.; Wang, Y.; Li, W. J.; Arooj, S.; Chen, C. H.; Wu, N. N.; Wang, Y.; Zbořil, R.; Fischer, R. A.; Liu, B. Dual-function HKUST-1: Templating and catalyzing formation of graphitic carbon nitride quantum dots under mild conditions. Angew. Chem., Int. Ed. 2020, 59, 21499–21504.
Tan, Y. C.; Zeng, H. C. Defect creation in HKUST-1 via molecular imprinting: Attaining anionic framework property and mesoporosity for cation exchange applications. Adv. Funct. Mater. 2017, 27, 1703765.
Wan, L. L.; Zhou, Q. X.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J. L.; Yan, X. L.; Xia, M. K.; Li, Y. F. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889–898.
Yi, J.; Xie, R.; Xie, Z.; Chai, G.; Liu, T.; Chen, R.; Huang, Y.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.
Zang, Y. P.; Liu, T. F.; Wei, P. F.; Li, H. F.; Wang, Q.; Wang, G. X.; Bao, X. H. Selective CO2 electroreduction to ethanol over a carbon-coated CuOx catalyst. Angew. Chem., Int. Ed. 2022, 61, e202209629.
Deng, Z. S.; Hu, S. C.; Ji, J. H.; Wu, S. Q.; Xie, H. J.; Xing, M. Y.; Zhang, J. L. Deep insight of the influence of Cu valence states in co-catalyst on CO2 photoreduction. Appl. Catal. B Environ. 2022, 316, 121621.
Dai, F. X.; Zhang, M. M.; Mi, M. Z.; Li, Z. J.; Xing, J.; Wang, L. Pt-surface oxygen vacancies coupling accelerated photo-charge extraction and activated hydrogen evolution. Nano Res. 2023, 16, 4736–4741.
Dong, X. A.; Cui, Z. H.; Sun, Y. J.; Dong, F. Humidity-independent photocatalytic toluene mineralization benefits from the utilization of edge hydroxyls in layered double hydroxides (LDHs): A combined operando and theoretical investigation. ACS Catal. 2021, 11, 8132–8139.
Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y. F.; Liu, J.; Li, S. L.; Lan, Y. Q. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat. Commun. 2022, 13, 4681.
Mondal, I.; Pal, U. Synthesis of MOF templated Cu/CuO@TiO2 nanocomposites for synergistic hydrogen production. Phys. Chem. Chem. Phys. 2016, 18, 4780–4788.
Kong, Z. C.; Liao, J. F.; Dong, Y. J.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Core@Shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662.
Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.
Dai, F. X.; Guo, Z. Y.; Zhao, W. J.; Li, Z. J.; Xing, J.; Wang, L. Interfacial engineering boosting charge extraction for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 450, 138015.
Xiao, M.; Zhang, L.; Luo, B.; Lyu, M. Q.; Wang, Z. L.; Huang, H. M.; Wang, S. C.; Du, A. J.; Wang, L. Z. Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 7230–7234.
Ma, Y. J.; Yi, X. X.; Wang, S. L.; Li, T.; Tan, B. E.; Chen, C. C.; Majima, T.; Waclawik, E. R.; Zhu, H. Y.; Wang, J. Y. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nat. Commun. 2022, 13, 1400.
Zhu, K.; Zhu, Q.; Jiang, M.; Zhang, Y.; Shao, Z.; Geng, Z.; Wang, X.; Zeng, H.; Wu, X.; Zhang, W. et al. Modulating Ti t2g orbital occupancy in a Cu/TiO2 composite for selective photocatalytic CO2 reduction to CO. Angew. Chem., Int. Ed. 2022, 61, e202207600.
Shen, J. C.; Luo, C. H.; Qiao, S. S.; Chen, Y. Q.; Tang, Y. H.; Xu, J. Q.; Fu, K. X.; Yuan, D. W.; Tang, H. F.; Zhang, H. et al. Single-atom Cu channel and N-vacancy engineering enables efficient charge separation and transfer between C3N4 interlayers for boosting photocatalytic hydrogen production. ACS Catal. 2023, 13, 6280–6288.
Zhang, X.; Matras-Postolek, K.; Yang, P.; Jiang, S. P. Z-scheme WOx/Cu-g-C3N4 heterojunction nanoarchitectonics with promoted charge separation and transfer towards efficient full solar-spectrum photocatalysis. J. Colloid Interface Sci. 2023, 636, 646–656.
Huang, Q.; Niu, Q.; Li, X. F.; Liu, J.; Sun, S. N.; Dong, L. Z.; Li, S. L.; Cai, Y. P.; Lan, Y. Q. Demystifying the roles of single metal site and cluster in CO2 reduction via light and electric dual-responsive polyoxometalate-based metal-organic frameworks. Sci. Adv. 2022, 8, eadd5598.