AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Engineered plant extracellular vesicles for autoimmune diseases therapy

Ruina Han1,2,3,§Yan Wu1,2,3,§Yafei Han1,2,3,§Xiangfei Liu4( )Han Liu1,2,3( )Jiacan Su1,2,3,5( )
Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
Organoid Research Center, Shanghai University, Shanghai 200444, China
National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China

§ Ruina Han, Yan Wu, and Yafei Han contributed equally to this work.

Show Author Information

Graphical Abstract

Natural plant extracellular vesicles (PEVs) derived from natural plants and engineered PEVs together constitute a new generation of therapeutic strategies for autoimmune diseases (AID).

Abstract

Autoimmune diseases (AID) encompass a diverse array of conditions characterized by immune system dysregulation, resulting in aberrant responses of B cells and T cells against the body’s own healthy tissues. Plant extracellular vesicles (PEVs) are nanoscale particles enclosed by phospholipid bilayers, secreted by plant cells, which facilitate intercellular communication by transporting various bioactive molecules. Due to their nanoscale structure, safety, abundant sources, low immunogenicity, high yield, biocompatibility, and effective targeting of the colon and liver, PEVs are regarded as a promising platform for the treatment of AID. This review provides a comprehensive summary of PEV biogenesis, physicochemical and biological properties, internalization mechanisms, isolation methods, and their applications in various diseases, with a specific focus on their potential roles in AID. Additionally, we propose engineering approaches and administration methods for PEVs. Finally, we present an overview of the advantages and challenges associated with utilizing PEVs for the treatment of AID. By gaining a comprehensive understanding of PEVs, we anticipate the development of innovative therapeutic strategies for AID. Natural and engineered PEVs hold substantial promise as a valuable resource for innovative technologies in AID treatment.

References

[1]

Davidson, A.; Diamond, B. Autoimmune diseases. N. Engl. J. Med. 2001, 345, 340–350.

[2]

Zhang, Y. N.; Li, Y. N.; Zhang, J. L.; Chen, X. H.; Zhang, R. F.; Sun, G. M.; Jiang, B.; Fan, K. L.; Li, Z. G.; Yan, X. Y. Nanocage-based capture-detection system for the clinical diagnosis of autoimmune disease. Small 2021, 17, e2101655.

[3]

Banchereau, R.; Cepika, A. M.; Pascual, V. Systems approaches to human autoimmune diseases. Curr. Opin. Immunol. 2013, 25, 598–605.

[4]

Wang, L. F.; Wang, F. S.; Gershwin, M. E. Human autoimmune diseases: A comprehensive update. J. Intern. Med. 2015, 278, 369–395.

[5]

Konforte, D.; Diamandis, E. P.; van Venrooij, W. J.; Lories, R.; Ward, M. M. Autoimmune diseases: Early diagnosis and new treatment strategies. Clin. Chem. 2012, 58, 1510–1514.

[6]

Danne, C.; Michaudel, C.; Skerniskyte, J.; Planchais, J.; Magniez, A.; Agus, A.; Michel, M. L.; Lamas, B.; Costa, G. D.; Spatz, M. et al. CARD9 in neutrophils protects from colitis and controls mitochondrial metabolism and cell survival. Gut. 2023, 72, 1081–1092.

[7]

Jiang, Y. Y.; Li, J. D.; Xue, X.; Yin, Z. F.; Xu, K.; Su, J. C. Engineered extracellular vesicles for bone therapy. Nano Today 2022, 44, 101487.

[8]

Sun, J. R.; Yin, Z. F.; Wang, X. H.; Su, J. C. Exosome-laden hydrogels: A novel cell-free strategy for in-situ bone tissue regeneration. Front. Bioeng. Biotechnol. 2022, 10, 866208.

[9]

Maas, S. L. N.; Breakefield, X. O.; Weaver, A. M. Extracellular vesicles: Unique intercellular delivery vehicles. Trends Cell Biol. 2017, 27, 172–188.

[10]

Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17.

[11]

Liu, H.; Sun, J. R.; Wang, M. K.; Wang, S. C.; Su, J. C.; Xu, C. Intestinal organoids and organoids extracellular vesicles for inflammatory bowel disease treatment. Chem. Eng. J. 2023, 465, 142842.

[12]

Liu, H.; Zhang, H.; Han, Y. F.; Hu, Y.; Geng, Z.; Su, J. C. Bacterial extracellular vesicles-based therapeutic strategies for bone and soft tissue tumors therapy. Theranostics 2022, 12, 6576–6594.

[13]

Ludwig, N.; Yerneni, S. S.; Azambuja, J. H.; Gillespie, D. G.; Menshikova, E. V.; Jackson, E. K.; Whiteside, T. L. Tumor-derived exosomes promote angiogenesis via adenosine A2B receptor signaling. Angiogenesis 2020, 23, 599–610.

[14]

Xu, F.; Fei, Z. Y.; Dai, H. X.; Xu, J. L.; Fan, Q.; Shen, S. F.; Zhang, Y.; Ma, Q. L.; Chu, J. C.; Peng, F. et al. Mesenchymal stem cell-derived extracellular vesicles with high PD-L1 expression for autoimmune diseases treatment. Adv. Mater. 2022, 34, e2106265.

[15]

Sosnowska, A.; Czystowska-Kuzmicz, M.; Golab, J. Extracellular vesicles released by ovarian carcinoma contain arginase 1 that mitigates antitumor immune response. OncoImmunology 2019, 8, e1655370.

[16]

Halperin, W.; Jensen, W. A. Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J. Ultrastruct. Res. 1967, 18, 428–443.

[17]

Sarvarian, P.; Samadi, P.; Gholipour, E.; Shams Asenjan, K.; Hojjat-Farsangi, M.; Motavalli, R.; Motavalli Khiavi, F.; Yousefi, M. Application of emerging plant-derived nanoparticles as a novel approach for nano-drug delivery systems. Immunol. Invest. 2022, 51, 1039–1059.

[18]

Yang, C. H.; Zhang, M. Z.; Merlin, D. Advances in plant-derived edible nanoparticle-based lipid nano-drug delivery systems as therapeutic nanomedicines. J. Mater. Chem. B 2018, 6, 1312–1321.

[19]

Baldini, N.; Torreggiani, E.; Roncuzzi, L.; Perut, F.; Zini, N.; Avnet, S. Exosome-like nanovesicles isolated from citrus limon L exert antioxidative effect. Curr. Pharm. Biotechnol. 2018, 19, 877–885.

[20]

Song, H. Y.; Li, X. Q.; Zhao, Z. C.; Qian, J.; Wang, Y.; Cui, J.; Weng, W. Z.; Cao, L. H.; Chen, X.; Hu, Y. et al. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes. Nano Lett. 2019, 19, 3040–3048.

[21]

Maeda, Y.; Farina, N. H.; Matzelle, M. M.; Fanning, P. J.; Lian, J. B.; Gravallese, E. M. Synovium-derived MicroRNAs regulate bone pathways in rheumatoid arthritis. J. Bone Miner. Res. 2017, 32, 461–472.

[22]

Dad, H. A.; Gu, T. W.; Zhu, A. Q.; Huang, L. Q.; Peng, L. H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol. Ther. 2021, 29, 13–31.

[23]

Cui, Y.; Gao, J. Y.; He, Y. L.; Jiang, L. W. Plant extracellular vesicles. Protoplasma 2020, 257, 3–12.

[24]

An, Q. L.; van Bel, A. J. E.; Hückelhoven, R. Do plant cells secrete exosomes derived from multivesicular bodies. Plant Signal. Behav. 2007, 2, 4–7.

[25]

Movahed, N.; Cabanillas, D. G.; Wan, J.; Vali, H.; Laliberté, J. F.; Zheng, H. Q. Turnip mosaic virus components are released into the extracellular space by vesicles in infected leaves. Plant Physiol. 2019, 180, 1375–1388.

[26]

Wang, J.; Ding, Y.; Wang, J. Q.; Hillmer, S.; Miao, Y. S.; Lo, S. W.; Wang, X. F.; Robinson, D. G.; Jiang, L. W. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 2010, 22, 4009–4030.

[27]

Hatsugai, N.; Iwasaki, S.; Tamura, K.; Kondo, M.; Fuji, K.; Ogasawara, K.; Nishimura, M.; Hara-Nishimura, I. A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev. 2009, 23, 2496–2506.

[28]

Wang, B. M.; Zhuang, X. Y.; Deng, Z. B.; Jiang, H.; Mu, J. Y.; Wang, Q. L.; Xiang, X. Y.; Guo, H. X.; Zhang, L. F.; Dryden, G. et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol. Ther. 2014, 22, 522–534.

[29]

Ju, S. W.; Mu, J. Y.; Dokland, T.; Zhuang, X. Y.; Wang, Q. L.; Jiang, H.; Xiang, X. Y.; Deng, Z. B.; Wang, B. M.; Zhang, L. F. et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther. 2013, 21, 1345–1357.

[30]

Mayran, N.; Parton, R. G.; Gruenberg, J. Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J. 2003, 22, 3242–3253.

[31]

White, I. J.; Bailey, L. M.; Aghakhani, M. R.; Moss, S. E.; Futter, C. E. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 2006, 25, 1–12.

[32]

Pocsfalvi, G.; Turiák, L.; Ambrosone, A.; Del Gaudio, P.; Puska, G.; Fiume, I.; Silvestre, T.; Vékey, K. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations. J. Plant Physiol. 2018, 229, 111–121.

[33]

Raimondo, S.; Naselli, F.; Fontana, S.; Monteleone, F.; Lo Dico, A.; Saieva, L.; Zito, G.; Flugy, A.; Manno, M.; Di Bella, M. A. et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget 2015, 6, 19514–19527.

[34]

Li, D.; Yao, X. L.; Yue, J. X.; Fang, Y. P.; Cao, G. F.; Midgley, A. C.; Nishinari, K.; Yang, Y. L. Advances in bioactivity of MicroRNAs of plant-derived exosome-like nanoparticles and milk-derived extracellular vesicles. J. Agric. Food Chem. 2022, 70, 6285–6299.

[35]

Zhang, M. Z.; Viennois, E.; Prasad, M.; Zhang, Y. C.; Wang, L. X.; Zhang, Z.; Han, M. K.; Xiao, B.; Xu, C. L.; Srinivasan, S. et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321–340.

[36]

Zhuang, X. Y.; Deng, Z. B.; Mu, J. Y.; Zhang, L. F.; Yan, J.; Miller, D.; Feng, W. K.; McClain, C. J.; Zhang, H. G. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles 2015, 4, 28713.

[37]

Perut, F.; Roncuzzi, L.; Avnet, S.; Massa, A.; Zini, N.; Sabbadini, S.; Giampieri, F.; Mezzetti, B.; Baldini, N. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules 2021, 11, 87.

[38]

Woith, E.; Guerriero, G.; Hausman, J. F.; Renaut, J.; Leclercq, C. C.; Weise, C.; Legay, S.; Weng, A.; Melzig, M. F. Plant extracellular vesicles and nanovesicles: Focus on secondary metabolites, proteins and lipids with perspectives on their potential and sources. Int. J. Mol. Sci. 2021, 22, 3719.

[39]

De Robertis, M.; Sarra, A.; D'Oria, V.; Mura, F.; Bordi, F.; Postorino, P.; Fratantonio, D. Blueberry-derived exosome-like nanoparticles counter the response to TNF-α-induced change on gene expression in EA hy926 cells. Biomolecules 2020, 10, 742.

[40]

Li, Z. F.; Wang, H. Z.; Yin, H. R.; Bennett, C.; Zhang, H. G.; Guo, P. X. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci. Rep. 2018, 8, 14644.

[41]

Cao, M.; Yan, H. J.; Han, X.; Weng, L.; Wei, Q.; Sun, X. Y.; Lu, W. G.; Wei, Q. Y.; Ye, J.; Cai, X. T. et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J. Immunother. Cancer 2019, 7, 326.

[42]

Wang, Q. L.; Zhuang, X. Y.; Mu, J. Y.; Deng, Z. B.; Jiang, H.; Zhang, L. F.; Xiang, X. Y.; Wang, B.; Yan, J.; Miller, D. et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat. Commun. 2013, 4, 1867.

[43]

Khoobchandani, M.; Zambre, A.; Katti, K.; Lin, C. H.; Katti, K. V. Green nanotechnology from brassicaceae: Development of broccoli phytochemicals-encapsulated gold nanoparticles and their applications in nanomedicine. Int. J. Green Nanotechnol. 2013, 1, 1943089213509474.

[44]

Fujita, D.; Arai, T.; Komori, H.; Shirasaki, Y.; Wakayama, T.; Nakanishi, T.; Tamai, I. Apple-derived nanoparticles modulate expression of organic-anion-transporting polypeptide (OATP) 2B1 in caco-2 cells. Mol. Pharm. 2018, 15, 5772–5780.

[45]

Gonda, A.; Kabagwira, J.; Senthil, G. N.; Wall, N. R. Internalization of exosomes through receptor-mediated endocytosis. Mol. Cancer. Res. 2019, 17, 337–347.

[46]

Nanjundaiah, S. M.; Venkatesha, S. H.; Yu, H.; Tong, L.; Stains, J. P.; Moudgil, K. D. Celastrus and its bioactive celastrol protect against bone damage in autoimmune arthritis by modulating osteoimmune cross-talk. J. Biol. Chem. 2012, 287, 22216–22226.

[47]

Song, H. L.; Canup, B. S. B.; Ngo, V. L.; Denning, T. L.; Garg, P.; Laroui, H. Internalization of garlic-derived nanovesicles on liver cells is triggered by interaction with CD98. ACS Omega 2020, 5, 23118–23128.

[48]

Teng, Y.; Ren, Y.; Sayed, M.; Hu, X.; Lei, C.; Kumar, A.; Hutchins, E.; Mu, J. Y.; Deng, Z. B.; Luo, C. et al. Plant-derived exosomal MicroRNAs shape the gut microbiota. Cell Host Microbe 2018, 24, 637–652.e8.

[49]

Xu, X. H.; Yuan, T. J.; Dad, H. A.; Shi, M. Y.; Huang, Y. Y.; Jiang, Z. H.; Peng, L. H. Plant exosomes as novel nanoplatforms for MicroRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett. 2021, 21, 8151–8159.

[50]

Hannafon, B. N.; Gin, A. L.; Xu, Y. F.; Bruns, M.; Calloway, C. L.; Ding, W. Q. Metastasis-associated protein 1 (MTA1) is transferred by exosomes and contributes to the regulation of hypoxia and estrogen signaling in breast cancer cells. Cell Commun. Signal. 2019, 17, 13.

[51]

Boriachek, K.; Islam, M. N.; Möller, A.; Salomon, C.; Nguyen, N. T.; Hossain, M. S. A.; Yamauchi, Y.; Shiddiky, M. J. A. Biological functions and current advances in isolation and detection strategies for exosome nanovesicles. Small 2018, 14, 1702153.

[52]

Potestà, M.; Minutolo, A.; Gismondi, A.; Canuti, L.; Kenzo, M.; Roglia, V.; Macchi, F.; Grelli, S.; Canini, A.; Colizzi, V. et al. Cytotoxic and apoptotic effects of different extracts of moringa oleifera lam on lymphoid and monocytoid cells. Exp. Ther. Med. 2019, 18, 5–17.

[53]

Kalarikkal, S. P.; Prasad, D.; Kasiappan, R.; Chaudhari, S. R.; Sundaram, G. M. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci. Rep. 2020, 10, 4456.

[54]

You, J. Y.; Kang, S. J.; Rhee, W. J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact. Mater. 2021, 6, 4321–4332.

[55]

You, D. G.; Lim, G. T.; Kwon, S.; Um, W.; Oh, B. H.; Song, S. H.; Lee, J.; Jo, D. G.; Cho, Y. W.; Park, J. H. Metabolically engineered stem cell-derived exosomes to regulate macrophage heterogeneity in rheumatoid arthritis. Sci. Adv. 2021, 7, eabe0083.

[56]

Yang, M.; Liu, X. Y.; Luo, Q. Q.; Xu, L. L.; Chen, F. X. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J. Nanobiotechnology 2020, 18, 100.

[57]

Huang, Y. F.; Wang, S. M.; Cai, Q.; Jin, H. L. Effective methods for isolation and purification of extracellular vesicles from plants. J. Integr. Plant Biol. 2021, 63, 2020–2030.

[58]

Zhuang, X. Y.; Teng, Y.; Samykutty, A.; Mu, J. Y.; Deng, Z. B.; Zhang, L. F.; Cao, P. X.; Rong, Y.; Yan, J.; Miller, D. et al. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol. Ther. 2016, 24, 96–105.

[59]

Rider, M. A.; Hurwitz, S. N.; Meckes, D. G. Jr. ExtraPEG:A polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep. 2016, 6, 23978.

[60]

Deregibus, M. C.; Figliolini, F.; D'Antico, S.; Manzini, P. M.; Pasquino, C.; De Lena, M.; Tetta, C.; Brizzi, M. F.; Camussi, G. Charge-based precipitation of extracellular vesicles. Int. J. Mol. Med. 2016, 38, 1359–1366.

[61]

Nordin, J. Z.; Lee, Y.; Vader, P.; Mäger, I.; Johansson, H. J.; Heusermann, W.; Wiklander, O. P. B.; Hällbrink, M.; Seow, Y.; Bultema, J. J. et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 2015, 11, 879–883.

[62]

Li, P.; Kaslan, M.; Lee, S. H.; Yao, J.; Gao, Z. Q. Progress in exosome isolation techniques. Theranostics 2017, 7, 789–804.

[63]

Lei, C.; Mu, J. Y.; Teng, Y.; He, L. Q.; Xu, F. Y.; Zhang, X. C.; Sundaram, K.; Kumar, A.; Sriwastva, M. K.; Lawrenz, M. B. et al. Lemon exosome-like nanoparticles-manipulated probiotics protect mice from C. diff infection. iScience 2020, 23, 101571.

[64]

Liu, B. L.; Lu, Y. Z.; Chen, X. Y.; Muthuraj, P. G.; Li, X. Z.; Pattabiraman, M.; Zempleni, J.; Kachman, S. D.; Natarajan, S. K.; Yu, J. J. Protective role of shiitake mushroom-derived exosome-like nanoparticles in D-galactosamine and lipopolysaccharide-induced acute liver injury in mice. Nutrients 2020, 12, 477.

[65]

Lee, R.; Ko, H. J.; Kim, K.; Sohn, Y.; Min, S. Y.; Kim, J. A.; Na, D.; Yeon, J. H. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J. Extracell. Vesicles 2020, 9, 1703480.

[66]

Kumar, A.; Ren, Y.; Sundaram, K.; Mu, J. Y.; Sriwastva, M. K.; Dryden, G. W.; Lei, C.; Zhang, L. F.; Yan, J.; Zhang, X. et al. miR-375 prevents high-fat diet-induced insulin resistance and obesity by targeting the aryl hydrocarbon receptor and bacterial tryptophanase (tnaA) gene. Theranostics 2021, 11, 4061–4077.

[67]

Sundaram, K.; Miller, D. P.; Kumar, A.; Teng, Y.; Sayed, M.; Mu, J. Y.; Lei, C.; Sriwastva, M. K.; Zhang, L. F.; Yan, J. et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis. iScience 2019, 21, 308–327.

[68]

Teng, Y.; Xu, F. Y.; Zhang, X. C.; Mu, J. Y.; Sayed, M.; Hu, X.; Lei, C.; Sriwastva, M.; Kumar, A.; Sundaram, K. et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol. Ther. 2021, 29, 2424–2440.

[69]

Zhang, H. Y.; Yang, M.; Wu, X.; Li, Q. X.; Li, X.; Zhao, Y. S.; Du, F. K.; Chen, Y.; Wu, Z. G.; Xiao, Z. G. et al. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol. Res. 2021, 171, 105785.

[70]

Xu, Z. J.; Zeng, S. S.; Gong, Z. C.; Yan, Y. L. Exosome-based immunotherapy: A promising approach for cancer treatment. Mol. Cancer 2020, 19, 160.

[71]

Li, L.; Zhang, L. L.; Montgomery, K. C.; Jiang, L.; Lyon, C. J.; Hu, T. Y. Advanced technologies for molecular diagnosis of cancer: State of pre-clinical tumor-derived exosome liquid biopsies. Mater. Today. Bio 2023, 18, 100538.

[72]

Barreiro, K.; Lay, A. C.; Leparc, G.; Tran, V. D. T.; Rosler, M.; Dayalan, L.; Burdet, F.; Ibberson, M.; Coward, R. J. M.; Huber, T. B. et al. An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles. J. Extracell. Vesicles 2023, 12, e12304.

[73]

Zhang, Y. M.; Cai, Z. C.; Shen, Y. L.; Lu, Q. Z.; Gao, W.; Zhong, X.; Yao, K.; Yuan, J.; Liu, H. B. Hydrogel-load exosomes derived from dendritic cells improve cardiac function via Treg cells and the polarization of macrophages following myocardial infarction. J. Nanobiotechnol. 2021, 19, 271.

[74]

Kim, J.; Li, S. Y.; Zhang, S. Y.; Wang, J. X. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J. Pharm. Sci. 2022, 17, 53–69.

[75]

Pinedo, M.; de la Canal, L.; de Marcos Lousa, C. A call for rigor and standardization in plant extracellular vesicle research. J. Extracell. Vesicles 2021, 10, e12048.

[76]

Logozzi, M.; Di Raimo, R.; Mizzoni, D.; Fais, S. The potentiality of plant-derived nanovesicles in human health-a comparison with human exosomes and artificial nanoparticles. Int. J. Mol. Sci. 2022, 23, 4919.

[77]

Shao, H. L.; Im, H.; Castro, C. M.; Breakefield, X.; Weissleder, R.; Lee, H. New technologies for analysis of extracellular vesicles. Chem. Rev. 2018, 118, 1917–1950.

[78]

Johnson, J.; Wu, Y. W.; Blyth, C.; Lichtfuss, G.; Goubran, H.; Burnouf, T. Prospective therapeutic applications of platelet extracellular vesicles. Trends Biotechnol. 2021, 39, 598–612.

[79]

Wiklander, O. P. B.; Brennan, M. Á.; Lötvall, J.; Breakefield, X. O.; El Andaloussi, S. Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 2019, 11, eaav8521.

[80]

Rao, D. A.; Gurish, M. F.; Marshall, J. L.; Slowikowski, K.; Fonseka, C. Y.; Liu, Y. Y.; Donlin, L. T.; Henderson, L. A.; Wei, K.; Mizoguchi, F. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 2017, 542, 110–114.

[81]

Ma, D.; Xu, K.; Zhang, G. L.; Liu, Y.; Gao, J. F.; Tian, M.; Wei, C.; Li, J.; Zhang, L. Y. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. Int. Immunopharmacol. 2019, 74, 105687.

[82]

Shu, Y.; Hu, Q. H.; Long, H.; Chang, C.; Lu, Q. J.; Xiao, R. Epigenetic variability of CD4+CD25+ tregs contributes to the pathogenesis of autoimmune diseases. Clin. Rev. Allergy Immunol. 2017, 52, 260–272.

[83]

Yang, J.; Chu, Y. W.; Yang, X.; Gao, D.; Zhu, L. B.; Yang, X. R.; Wan, L. L.; Li, M. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 2009, 60, 1472–1483.

[84]

Wang, Y. L.; Zhang, H.; Hu, Y.; Jing, Y. Y.; Geng, Z.; Su, J. C. Bone repair biomaterials: A perspective from immunomodulation. Adv. Funct. Mater. 2022, 32, 2208639.

[85]

Guo, L. N.; Zhong, S. H.; Liu, P.; Guo, M.; Ding, J. S.; Zhou, W. H. Radicals scavenging MOFs enabling targeting delivery of siRNA for rheumatoid arthritis therapy. Small 2022, 18, e2202604.

[86]

Wang, Y. L.; Lin, Q. S.; Zhang, H.; Wang, S. C.; Cui, J.; Hu, Y.; Liu, J. L.; Li, M. M.; Zhang, K.; Zhou, F. J. et al. M2 macrophage-derived exosomes promote diabetic fracture healing by acting as an immunomodulator. Bioact. Matter 2023, 28, 273–283.

[87]

Hot, A.; Miossec, P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann. Rheum. Dis. 2011, 70, 727–732.

[88]

Adami, S.; Cavani, A.; Rossi, F.; Girolomoni, G. The role of interleukin-17A in psoriatic disease. BioDrugs 2014, 28, 487–497.

[89]

Quiñonez-Flores, C. M.; González-Chávez, S. A.; Del Río Nájera, D.; Pacheco-Tena, C. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: A systematic review. Biomed Res. Int. 2016, 2016, 6097417.

[90]

Ren, X. X.; Liu, H.; Wu, X. M.; Weng, W. Z.; Wang, X. H.; Su, J. C. Reactive oxygen species (ROS)-responsive biomaterials for the treatment of bone-related diseases. Front. Bioeng. Biotechnol. 2022, 9, 820468.

[91]

Mu, J. Y.; Zhuang, X. Y.; Wang, Q. L.; Jiang, H.; Deng, Z. B.; Wang, B. M.; Zhang, L. F.; Kakar, S.; Jun, Y.; Miller, D. et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. 2014, 58, 1561–1573.

[92]

Aquilano, K.; Ceci, V.; Gismondi, A.; De Stefano, S.; Iacovelli, F.; Faraonio, R.; Di Marco, G.; Poerio, N.; Minutolo, A.; Minopoli, G. et al. Adipocyte metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts. Commun. Biol. 2019, 2, 317.

[93]

Deng, Z. B.; Rong, Y.; Teng, Y.; Mu, J. Y.; Zhuang, X. Y.; Tseng, M.; Samykutty, A.; Zhang, L. F.; Yan, J.; Miller, D. et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol. Ther. 2017, 25, 1641–1654.

[94]

Zhang, H. T.; Wang, L.; Li, C. Y.; Yu, Y.; Yi, Y. L.; Wang, J. Y.; Chen, D. P. Exosome-induced regulation in inflammatory bowel disease. Front. Immunol. 2019, 10, 1464.

[95]

Sato, T.; Vries, R. G.; Snippert, H. J.; van de Wetering, M.; Barker, N.; Stange, D. E.; van Es, J. H.; Abo, A.; Kujala, P.; Peters, P. J. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265.

[96]

Snippert, H. J.; van der Flier, L. G.; Sato, T.; van Es, J. H.; van den Born, M.; Kroon-Veenboer, C.; Barker, N.; Klein, A. M.; van Rheenen, J.; Simons, B. D. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 2010, 143, 134–144.

[97]

Lamba, M.; Ngu, J. H.; Stedman, C. A. M. Trends in incidence of autoimmune liver diseases and increasing incidence of autoimmune hepatitis. Clin. Gastroenterol. Hepatol. 2021, 19, 573–579.e1.

[98]

van der Woude, D.; van der Helm-van Mil, A. H. M. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2018, 32, 174–187.

[99]

Li, J.; Chen, L.; Xu, X. Y.; Fan, Y.; Xue, X.; Shen, M. W.; Shi, X. Y. Targeted combination of antioxidative and anti-inflammatory therapy of rheumatoid arthritis using multifunctional dendrimer-entrapped gold nanoparticles as a platform. Small 2020, 16, e2005661.

[100]

Li, Y. F.; Liang, Q. W.; Zhou, L. Y.; Cao, Y. J.; Yang, J. Y.; Li, J.; Liu, J. X.; Bi, J. W.; Liu, Y. H. An ROS-responsive artesunate prodrug nanosystem co-delivers dexamethasone for rheumatoid arthritis treatment through the HIF-1α/NF-κB cascade regulation of ROS scavenging and macrophage repolarization. Acta Biomater. 2022, 152, 406–424.

[101]

Chen, X. Y.; Zhou, Y.; Yu, J. J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol. Pharm. 2019, 16, 2690–2699.

[102]

Feng, Z. T.; Yang, T.; Hou, X. Q.; Wu, H. Y.; Feng, J. T.; Ou, B. J.; Cai, S. J.; Li, J.; Mei, Z. G. Sinomenine mitigates collagen-induced arthritis mice by inhibiting angiogenesis. Biomed. Pharmacother. 2019, 113, 108759.

[103]

Chen, J. F.; Wu, W. B.; Zhang, M. M.; Chen, C. M. Taraxasterol suppresses inflammation in IL-1β-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice. Int. Immunopharmacol. 2019, 70, 274–283.

[104]

Liang, J.; Chang, B. Y.; Huang, M. C.; Huang, W. C.; Ma, W. K.; Liu, Y.; Tai, W.; Long, Y.; Lu, Y. Oxymatrine prevents synovial inflammation and migration via blocking NF-κB activation in rheumatoid fibroblast-like synoviocytes. Int. Immunopharmacol. 2018, 55, 105–111.

[105]

Yu, W. G.; Shen, Y.; Wu, J. Z.; Gao, Y. B.; Zhang, L. X. Madecassoside impedes invasion of rheumatoid fibroblast-like synoviocyte from adjuvant arthritis rats via inhibition of NF-κB-mediated matrix metalloproteinase-13 expression. Chin. J. Nat. Med. 2018, 16, 330–338.

[106]

Mateen, S.; Zafar, A.; Moin, S.; Khan, A. Q.; Zubair, S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin. Chim. Acta 2016, 455, 161–171.

[107]

Venkatesan, R.; Xiong, H.; Yao, Y. J.; Reddy Nakkala, J.; Zhou, T.; Li, S. F.; Fan, C. Y.; Gao, C. Y. Immuno-modulating theranostic gold nanocages for the treatment of rheumatoid arthritis in vivo. Chem. Eng. J. 2022, 446, 136868.

[108]

Yeh, C. H.; Chen, T. P.; Wu, Y. C.; Lin, Y. M.; Jing Lin, P. Inhibition of NFκB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion. J. Surg. Res. 2005, 125, 109–116.

[109]

Collins, S. M.; Bercik, P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 2009, 136, 2003–2014.

[110]

Hsu, W. T.; Suen, J. L.; Chiang, B. L. The role of CD4+CD25+ T cells in autoantibody production in murine lupus. Clin. Exp. Immunol. 2006, 145, 513–519.

[111]

Khorasani, S.; Mahmoudi, M.; Kalantari, M. R.; Lavi Arab, F.; Esmaeili, S. A.; Mardani, F.; Tabasi, N.; Rastin, M. Amelioration of regulatory T cells by Lactobacillus delbrueckii and Lactobacillus rhamnosus in pristane-induced lupus mice model. J. Cell Physiol. 2019, 234, 9778–9786.

[112]

Salehipour, Z.; Haghmorad, D.; Sankian, M.; Rastin, M.; Nosratabadi, R.; Soltan Dallal, M. M.; Tabasi, N.; Khazaee, M.; Nasiraii, L. R.; Mahmoudi, M. Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomed. Pharmacother 2017, 95, 1535–1548.

[113]

Talaat, R. M.; Mohamed, S. F.; Bassyouni, I. H.; Raouf, A. A. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 2015, 72, 146–153.

[114]

Mix, E.; Meyer-Rienecker, H.; Hartung, H. P.; Zettl, U. K. Animal models of multiple sclerosis-potentials and limitations. Prog. Neurobiol. 2010, 92, 386–404.

[115]

Suriano, E. S.; Souza, M. D. M.; Kobata, C. M.; Santos, F. H. Y.; Mimica, M. J. Efficacy of an adjuvant Lactobacillus rhamnosus formula in improving skin lesions as assessed by PASI in patients with plaque psoriasis from a university-affiliated, tertiary-referral hospital in São Paulo (Brazil): A parallel, double-blind, randomized clinical trial. Arch. Dermatol. Res. 2023, 315, 1621–1629.

[116]

Feng, J. J.; Xiu, Q.; Huang, Y. Y.; Troyer, Z.; Li, B.; Zheng, L. Plant-derived vesicle-like nanoparticles as promising biotherapeutic tools: Present and future. Adv. Mater. 2023, 35, 2207826.

[117]

Liu, H.; Li, M. M.; Zhang, T.; Liu, X. R.; Zhang, H.; Geng, Z.; Su, J. C. Engineered bacterial extracellular vesicles for osteoporosis therapy. Chem. Eng. J. 2022, 450, 138309.

[118]

Liu, H.; Geng, Z.; Su, J. C. Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for targeted therapy. Extracell. Vesicles Circ. Nucleic Acids 2022, 3, 63–86.

[119]

Zhang, Y. X.; Malzahn, A. A.; Sretenovic, S.; Qi, Y. P. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 2019, 5, 778–794.

[120]

Deng, H.; Huang, W.; Zhang, Z. P. Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect. Nano Res. 2019, 12, 2437–2450.

[121]

Demirer, G. S.; Silva, T. N.; Jackson, C. T.; Thomas, J. B.; Ehrhardt, D. W.; Rhee, S. Y.; Mortimer, J. C.; Landry, M. P. Nanotechnology to advance CRISPR-cas genetic engineering of plants. Nat. Nanotechnol. 2021, 16, 243–250.

[122]

Cloutier, N.; Paré, A.; Farndale, R. W.; Schumacher, H. R.; Nigrovic, P. A.; Lacroix, S.; Boilard, E. Platelets can enhance vascular permeability. Blood 2012, 120, 1334–1343.

[123]

Fuhrmann, G.; Serio, A.; Mazo, M.; Nair, R.; Stevens, M. M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Release 2015, 205, 35–44.

[124]

Adriano, B.; Cotto, N. M.; Chauhan, N.; Jaggi, M.; Chauhan, S. C.; Yallapu, M. M. Milk exosomes: Nature's abundant nanoplatform for theranostic applications. Bioact. Mater. 2021, 6, 2479–2490.

[125]

Li, S. Y.; Tang, Y.; Dou, Y. S. The potential of milk-derived exosomes for drug delivery. Curr. Drug Deliv. 2021, 18, 688–699.

[126]

Umezu, T.; Takanashi, M.; Murakami, Y.; Ohno, S. I.; Kanekura, K.; Sudo, K.; Nagamine, K.; Takeuchi, S.; Ochiya, T.; Kuroda, M. Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Mol. Ther. Methods Clin. Dev. 2021, 21, 199–208.

[127]

Zhang, M. Z.; Xiao, B.; Wang, H.; Han, M. K.; Zhang, Z.; Viennois, E.; Xu, C. L.; Merlin, D. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol. Ther. 2016, 24, 1783–1796.

[128]

Yang, C. H.; Zhang, M. Z.; Lama, S.; Wang, L. X.; Merlin, D. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its metabolites M2 and M13 to the colon to treat ulcerative colitis. J. Control. Release 2020, 323, 293–310.

[129]

Ren, X. X.; Chen, X.; Geng, Z.; Su, J. C. Bone-targeted biomaterials: Strategies and applications. Chem. Eng. J. 2022, 446, 137133.

[130]

Guo, J. W.; Wang, F. X.; Hu, Y.; Luo, Y.; Wei, Y.; Xu, K.; Zhang, H.; Liu, H.; Bo, L. M.; Lv, S. L. et al. Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases. Cell Rep. Med. 2023, 4, 100881.

[131]

Xue, X.; Liu, H.; Wang, S. C.; Hu, Y.; Huang, B. T.; Li, M. M.; Gao, J.; Wang, X. H.; Su, J. C. Neutrophil-erythrocyte hybrid membrane-coated hollow copper sulfide nanoparticles for targeted and photothermal/ anti-inflammatory therapy of osteoarthritis. Compos. B Eng. 2022, 237, 109855.

[132]

Wang, L. X.; Qi, C. X.; Cao, H. M.; Zhang, Y. W.; Liu, X.; Qiu, L. N.; Wang, H.; Xu, L. J.; Wu, Z. Z.; Liu, J. F. et al. Engineered cytokine-primed extracellular vesicles with high PD-L1 expression ameliorate type 1 diabetes. Small 2023, in press, DOI: 10.1002/smll.202301019.

[133]

Zhou, Y.; Wang, L.; Chen, L. F.; Wu, W.; Yang, Z. M.; Wang, Y. Z.; Wang, A. Q.; Jiang, S. J.; Qin, X. Z.; Ye, Z. C. et al. Glioblastoma cell-derived exosomes functionalized with peptides as efficient nanocarriers for synergistic chemotherapy of glioblastoma with improved biosafety. Nano Res. 2023, in press, DOI: 10.1007/s12274-023-5921-6.

[134]

Wang, M. Y.; Wang, Y. F.; Mu, Y. T.; Yang, F. X.; Yang, Z. B.; Liu, Y. X.; Huang, L. L.; Liu, S.; Guan, X. G.; Xie, Z. G. et al. Engineering SIRPα cellular membrane-based nanovesicles for combination immunotherapy. Nano Res. 2023, 16, 7355–7363.

[135]

Li, H.; Zhong, Y. F.; Wang, S. M.; Zha, M.; Gu, W. X.; Liu, G. Y.; Wang, B. H.; Yu, Z. D.; Wang, Y.; Li, K. et al. In vivo bioorthogonal labeling of rare-earth doped nanoparticles for improved NIR-II tumor imaging by extracellular vesicle-mediated targeting. Nano Res. 2023, 16, 2904–2895.

[136]

Li, D.; Yao, S. R.; Zhou, Z. F.; Shi, J.; Huang, Z. H.; Wu, Z. M. Hyaluronan decoration of milk exosomes directs tumor-specific delivery of doxorubicin. Carbohydr. Res. 2020, 493, 108032.

[137]

Niu, W. B.; Xiao, Q.; Wang, X. J.; Zhu, J. Q.; Li, J. H.; Liang, X. M.; Peng, Y. M.; Wu, C. T.; Lu, R. J.; Pan, Y. et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021, 21, 1484–1492.

[138]

Headland, S. E.; Jones, H. R.; Norling, L. V.; Kim, A.; Souza, P. R.; Corsiero, E.; Gil, C. D.; Nerviani, A.; Dell'Accio, F.; Pitzalis, C. et al. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci. Transl. Med. 2015, 7, 315ra190.

[139]

Topping, L. M.; Thomas, B. L.; Rhys, H. I.; Tremoleda, J. L.; Foster, M.; Seed, M.; Voisin, M. B.; Vinci, C.; Law, H. L.; Perretti, M. et al. Targeting extracellular vesicles to the arthritic joint using a damaged cartilage-specific antibody. Front. Immunol. 2020, 11, 10.

[140]

Zhang, Q.; Xiao, Q.; Yin, H. L.; Xia, C. W.; Pu, Y. M.; He, Z. F.; Hu, Q. G.; Wang, J. Q.; Wang, Y. X. Milk-exosome based pH/light sensitive drug system to enhance anticancer activity against oral squamous cell carcinoma. RSC Adv. 2020, 10, 28314–28323.

[141]

Gao, J. F.; Yakufu, W.; Yang, H. B.; Song, Y. N.; Wang, Q. Z.; Li, Q. Y.; Tan, H. P.; Chen, J.; Sun, D. L.; Wang, Z. M. et al. Early initiation of ARBs without blood pressure risk via neutrophil membrane-fused pH-sensitive liposomes to reduce cardiomyocyte apoptosis after acute myocardial infarction. Nano Res. 2023, 16, 9894–9905.

[142]

Wang, Q. L.; Ren, Y.; Mu, J. Y.; Egilmez, N. K.; Zhuang, X. Y.; Deng, Z. B.; Zhang, L. F.; Yan, J.; Miller, D.; Zhang, H. G. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015, 75, 2520–2529.

[143]

Chen, P. F.; Liu, X.; Gu, C. H.; Zhong, P. Y.; Song, N.; Li, M. B.; Dai, Z. Q.; Fang, X. Q.; Liu, Z. M.; Zhang, J. F. et al. A plant-derived natural photosynthetic system for improving cell anabolism. Nature 2022, 612, 546–554.

[144]

Yang, J. L.; Zhu, Y.; Wang, F.; Deng, L. F.; Xu, X. Y.; Cui, W. G. Microfluidic liposomes-anchored microgels as extended delivery platform for treatment of osteoarthritis. Chem. Eng. J. 2020, 400, 126004.

[145]

Tibbitt, M. W.; Dahlman, J. E.; Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016, 138, 704–717.

[146]

Mao, Y. L.; Han, M. Q.; Chen, C. S.; Wang, X. D.; Han, J. N.; Gao, Y. K.; Wang, S. L. A biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for high-performance delivery of oral antibodies. Nanoscale 2021, 13, 20157–20169.

[147]

Prausnitz, M. R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268.

[148]

Gu, T. W.; Wang, M. Z.; Niu, J.; Chu, Y.; Guo, K. R.; Peng, L. H. Outer membrane vesicles derived from E. coli as novel vehicles for transdermal and tumor targeting delivery. Nanoscale 2020, 12, 18965–18977.

[149]

Yepes-Molina, L.; Martínez-Ballesta, M. C.; Carvajal, M. Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers. J. Adv. Res. 2020, 23, 101–111.

[150]

Zhou, D. Y.; Zhou, F. J.; Sheng, S. H.; Wei, Y.; Chen, X.; Su, J. C. Intra-articular nanodrug delivery strategies for treating osteoarthritis. Drug Discov. Today 2023, 28, 103482.

[151]

Xue, X.; Hu, Y.; Deng, Y. H.; Su, J. C. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater. 2021, 31, 2009432.

[152]

Zhang, H.; Wu, S. L.; Chen, W. K.; Hu, Y.; Geng, Z.; Su, J. C. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact. Mater. 2023, 23, 156–169.

[153]

Pang, L. Y.; Jin, H.; Lu, Z. M.; Xie, F. Y.; Shen, H. X.; Li, X. Y.; Zhang, X. Y.; Jiang, X. H.; Wu, L. L.; Zhang, M. Y. et al. Treatment with mesenchymal stem cell-derived nanovesicle-containing gelatin methacryloyl hydrogels alleviates osteoarthritis by modulating chondrogenesis and macrophage polarization. Adv. Healthc. Mater. 2023, 12, e2300315.

[154]
Wu, S. L.; Zhang, H.; Wang, S. C.; Sun, J. R.; Hu, Y.; Liu, H.; Liu, J. L.; Chen, X.; Zhou, F. J.; Bai, L. et al. Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. Mater. Horiz. , in press,DOI: 10.1039/d3mh00042g.
[155]

Kim, S. Q.; Kim, K. H. Emergence of edible plant-derived nanovesicles as functional food components and nanocarriers for therapeutics delivery: Potentials in human health and disease. Cells 2022, 11, 2232.

[156]

Baglio, S. R.; Pegtel, D. M.; Baldini, N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front. Physiol. 2012, 3, 359.

[157]

Zu, M. H.; Xie, D. C.; Canup, B. S. B.; Chen, N. X.; Wang, Y. J.; Sun, R. X.; Zhang, Z.; Fu, Y. M.; Dai, F. Y.; Xiao, B. 'Green' nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases. Biomaterials 2021, 279, 121178.

[158]

Chen, Y. S.; Lin, E. Y.; Chiou, T. W.; Harn, H. J. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Tzu Chi Med. J. 2020, 32, 113–120.

Nano Research
Pages 2857-2873
Cite this article:
Han R, Wu Y, Han Y, et al. Engineered plant extracellular vesicles for autoimmune diseases therapy. Nano Research, 2024, 17(4): 2857-2873. https://doi.org/10.1007/s12274-023-6112-1
Topics:

1233

Views

6

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 20 July 2023
Revised: 20 August 2023
Accepted: 21 August 2023
Published: 18 September 2023
© Tsinghua University Press 2023
Return