Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Highly evolved multi-enzyme cascade catalytic reactions in organisms facilitate rapid transfer of substrates and efficient conversion of intermediates in the catalytic unit, thus rationalizing their efficient biocatalysis. In this study, pore-ordered mesoporous single-atom (Fe) nitrogen-doped carbon nanoreactors (Mp-Fe-CN) were designed, in which a reasonable pore size was designed as a natural enzyme trap coupled to a simulated enzyme center. A polarity-mediated strategy was developed to obtain atomically dispersed nanoporous substrates, with the finding that polarity-guided engineering of the nitrogen-ligand environment and vacancy cluster defects clearly affects nanoporous activity, accompanied by appreciable mesoporous pore size elevation. The active center and distal N atom coordination of Fe-N4 affect the catalytic process of the nanozyme exposed by density functional theory (DFT), determining the contribution of hybridized orbitals to electron transfer and the decisive step. A cascade nanoreactor-based domain-limited sarcosine oxidase developed for non-invasive monitoring of sarcosine levels in urine for evaluation of potential prostate carcinogenesis as a proof of concept. Based on the design of surface mesoporous channels of nanocatalytic units, a bridge was built for the interaction between nanozymes and natural enzymes to achieve cascade nanocatalysis of natural enzymatic products.
Vázquez-González, M.; Wang, C.; Willner, I. Biocatalytic cascades operating on macromolecular scaffolds and in confined environments. Nat. Catal. 2020, 3, 256–273.
Feng, Y. F.; Shi, R. X.; Yang, M. F.; Zheng, Y. L.; Zhang, Z. J.; Chen, Y. A dynamic defect generation strategy for efficient enzyme immobilization in robust metal-organic frameworks for catalytic hydrolysis and chiral resolution. Angew. Chem., Int. Ed. 2023, 62, e202302436.
Getzoff, E. D.; Cabelli, D. E.; Fisher, C. L.; Parge, H. E.; Viezzoli, M. S.; Banci, L.; Hallewell, R. A. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature 1992, 358, 347–351.
Wheeldon, I.; Minteer, S. D.; Banta, S.; Barton, S. C.; Atanassov, P.; Sigman, M. Substrate channelling as an approach to cascade reactions. Nat. Chem. 2016, 8, 299–309.
Zhao, Z.; Fu, J. L.; Dhakal, S.; Johnson-Buck, A.; Liu, M. H.; Zhang, T.; Woodbury, N. W.; Liu, Y.; Walter, N. G.; Yan, H. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat. Commun. 2016, 7, 10619.
Zhang, Y. F.; Xing, C. Y.; Mu, Z. J.; Niu, Z. R.; Feng, X.; Zhang, Y. Y.; Wang, B. Harnessing self-repairing and crystallization processes for effective enzyme encapsulation in covalent organic frameworks. J. Am. Chem. Soc. 2023, 145, 13469–13475.
Lan, K.; Liu, L.; Yu, J. Y.; Ma, Y. Z.; Zhang, J. Y.; Lv, Z. R.; Yin, S. X.; Wei, Q. L.; Zhao, D. Y. Stepwise monomicelle assembly for highly ordered mesoporous TiO2 membranes with precisely tailored mesophase and porosity. JACS Au 2023, 3, 1141–1150.
Jiao, L.; Wu, J. B.; Zhong, H.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Chen, Y. F.; Yan, H. Y.; Zhang, Q. H.; Gu, W. L. et al. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.
Wei, X. Q.; Song, S. J.; Cai, W. W.; Luo, X.; Jiao, L.; Fang, Q.; Wang, X. S.; Wu, N. N.; Luo, Z.; Wang, H. J. et al. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 2023, 9, 181–197.
Cao, X. Y.; Zhao, L. L.; Wulan, B.; Tan, D. X.; Chen, Q. W.; Ma, J. Z.; Zhang, J. T. Atomic bridging structure of nickel-nitrogen-carbon for highly efficient electrocatalytic reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202113918.
Kim, K.; Lee, J.; Park, O. K.; Kim, J.; Kim, J.; Lee, D.; Paidi, V. K.; Jung, E.; Lee, H. S.; Lee, B. et al. Geometric tuning of single-atom FeN4 sites via edge-generation enhances multi-enzymatic properties. Adv. Mater. 2023, 35, 2207666.
Wang, Y.; Cho, A.; Jia, G. R.; Cui, X. Q.; Shin, J.; Nam, I.; Noh, K. J.; Park, B. J.; Huang, R.; Han, J. W. Tuning local coordination environments of manganese single-atom nanozymes with multi-enzyme properties for selective colorimetric biosensing. Angew. Chem., Int. Ed. 2023, 62, e202300119.
Zhao, S. F.; Li, H. H.; Liu, R. Y.; Tao, N.; Deng, L.; Xu, Q. Q.; Hou, J. N.; Sheng, J. P.; Zheng, J.; Wang, L. Q. et al. Nitrogen-centered lactate oxidase nanozyme for tumor lactate modulation and microenvironment remodeling. J. Am. Chem. Soc. 2023, 145, 10322–10332.
Zhu, D. M.; Ling, R. Y.; Chen, H.; Lyu, M.; Qian, H. S.; Wu, K. L.; Li, G. X.; Wang, X. W. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res. 2022, 15, 7320–7328.
Zhong, X. Y.; Wang, X. W.; Cheng, L.; Tang, Y. A.; Zhan, G. T.; Gong, F.; Zhang, R.; Hu, J.; Liu, Z.; Yang, X. L. GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 2020, 30, 1907954.
Wu, K. L.; Zhu, D. D.; Dai, X. L.; Wang, W. N.; Zhong, X. Y.; Fang, Z. B.; Peng, C.; Wei, X. W.; Qian, H. S.; Chen, X. L. et al. Bimetallic oxide Cu1.5Mn1.5O4 cage-like frame nanospheres with triple enzyme-like activities for bacterial-infected wound therapy. Nano Today 2022, 43, 101380.
Xu, B. L.; Li, S. S.; Zheng, L. R.; Liu, Y. H.; Han, A. L.; Zhang, J.; Huang, Z. J.; Xie, H. J.; Fan, K. L.; Gao, L. Z. et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 2022, 34, 2107088.
Wang, X. W.; Shi, Q. Q.; Zha, Z.; Zhu, D. D.; Zheng, L. R.; Shi, L. X.; Wei, X. W.; Lian, L.; Wu, K. L.; Cheng, L. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 2021, 6, 4389–4401.
Wu, Y.; Xu, W. Q.; Jiao, L.; Tang, Y. J.; Chen, Y. F.; Gu, W. L.; Zhu, C. Z. Defect engineering in nanozymes. Mater. Today 2022, 52, 327–347.
Wu, Y.; Wen, J.; Xu, W. Q.; Huang, J. J.; Jiao, L.; Tang, Y. J.; Chen, Y. F.; Yan, H. Y.; Cao, S. Y.; Zheng, L. R. et al. Defect-engineered nanozyme-linked receptors. Small 2021, 17, 2101907.
Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Tada, T.; Hosono, H. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 2020, 583, 391–395.
Hu, J. T.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q. H.; Wen, W.; Yu, S.; Pan, Y. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250.
Yu, Z. C.; Tang, J.; Gong, H. X.; Gao, Y.; Zeng, Y. Y.; Tang, D. P.; Liu, X. L. Enzyme-encapsulated protein trap engineered metal-organic framework-derived biomineral probes for non-invasive prostate cancer surveillance. Adv. Funct. Mater. 2023, 33, 2301457.
Ghorbanpour, S. M.; Wen, S. H.; Kaitu'u-Lino, T. J.; Hannan, N. J.; Jin, D. Y.; McClements, L. Quantitative point of care tests for timely diagnosis of early-onset preeclampsia with high sensitivity and specificity. Angew. Chem., Int. Ed. 2023, 62, e202301193.
Hassanzadeh, J.; Al Lawati, H. A. J.; Bagheri, N. On paper synthesis of multifunctional CeO2 nanoparticles@Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose. Biosens. Bioelectron. 2022, 207, 114184.
Wan, X. K.; Wu, H. B.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 2020, 32, 1901349.
Zhang, H. B.; Liu, Y. Y.; Chen, T.; Zhang, J. T.; Zhang, J.; Lou, X. W. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Angew. Chem., Int. Ed. 2019, 31, 1904548.
Cao, X. W.; Zhu, C. X.; Hong, Q.; Chen, X. H.; Wang, K. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Insight into iron leaching from an ascorbate-oxidase-like Fe-N-C nanozyme and oxygen reduction selectivity. Angew. Chem., Int. Ed. 2023, 62, e202302463.
Wan, K. W.; Jiang, B.; Tan, T.; Wang, H.; Liang, M. M. Surface-mediated production of complexed ·OH radicals and Fe=O species as a mechanism for iron oxide peroxidase-like nanozymes. Angew. Chem., Int. Ed. 2022, 18, 2204372.
Xu, Y.; Xue, J.; Zhou, Q.; Zheng, Y. J.; Chen, X. H.; Liu, S. Q.; Shen, Y. F.; Zhang, Y. J. The Fe-N-C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug–drug interactions. Angew. Chem., Int. Ed. 2020, 59, 14498–14503.
Qileng, A.; Chen, S. Z.; Liang, H. Z.; Chen, M. T.; Lei, H. T.; Liu, W. P.; Liu, Y. J. Boosting ultralong chemiluminescence for the self-powered time-resolved immunosensor. Biosens. Bioelectron. 2023, 234, 115338.
Jiao, L.; Xu, W. Q.; Zhang, Y.; Wu, Y.; Gu, W. L.; Ge, X. X.; Chen, B. B.; Zhu, C. Z.; Guo, S. J. Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today 2020, 35, 100971.
Jiao, L.; Tao, N.; Kang, Y. K.; Song, W. Y.; Chen, Y. F.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Gu, W. L.; Zheng, L. R. et al. Biomimetic Fe-Cu dual-atomic-site catalysts enable efficient H2O2 activation for tumor lymphatic metastasis inhibition. Nano Today 2023, 50, 101859.
Qin, Y.; Tan, R.; Wen, J.; Huang, Q. K.; Wang, H. J.; Liu, M. W.; Li, J. L.; Wang, C. L.; Shen, Y.; Hu, L. Y. et al. Engineering the microenvironment of electron transport layers with nickle single-atom sites for boosting photoelectrochemical performance. Chem. Sci. 2023, 14, 7346–7354.
Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.
Wang, Z. W.; Wang, W. L.; Wang, J.; Wang, D. S.; Liu, M. L.; Wu, Q. Y.; Hu, H. Y. Single-atom catalysts with ultrahigh catalase-like activity through electron filling and orbital energy regulation. Adv. Funct. Mater. 2023, 33, 2209560.
Wang, S.; Hu, Z. F.; Wei, Q. L.; Zhang, H. M.; Tang, W. N.; Sun, Y. Q.; Duan, H. Q.; Dai, Z. C.; Liu, Q. Y.; Zheng, X. W. Diatomic active sites nanozymes: Enhanced peroxidase-like activity for dopamine and intracellular H2O2 detection. Nano Res. 2022, 15, 4266–4273.
Li, K.; Yang, J.; Gu, J. L. Spatially organized functional bioreactors in nanoscale mesoporous MOFs for cascade scavenging of intracellular ROS. Chem. Mater. 2021, 33, 2198–2205.
Yang, J.; Li, K.; Gu, J. L. Hierarchically macro-microporous ce-based MOFs for the cleavage of DNA. ACS Mater. Lett. 2022, 4, 385–391.
Chen, Y.; He, Y.; Xu, H. K.; Du, C.; Wu, X. J.; Yang, G. W. Superior peroxidase mimetic activity induced by topological surface states of Weyl semimetal WTe2. Nano Today 2022, 43, 101421.
Wen, S. S.; Zhang, Z. W.; Zhang, Y. P.; Liu, H.; Ma, X. W.; Li, L. J.; Song, W.; Zhao, B. Ultrasensitive stimulation effect of fluoride ions on a novel nanozyme-SERS system. ACS Sustainable Chem. Eng. 2020, 8, 11906–11913.
Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.
Wang, X. W.; Zhong, X. Y.; Bai, L. X.; Xu, J.; Gong, F.; Dong, Z. L.; Yang, Z. J.; Zeng, Z. J.; Liu, Z.; Cheng, L. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6527–6537.
Hao, J. Y.; Zhang, C.; Feng, C. X.; Wang, Q.; Liu, Z. Y.; Li, Y.; Mu, J. S.; Yang, E. C.; Wang, Y. An ultra-highly active nanozyme of Fe, N co-doped ultrathin hollow carbon framework for antibacterial application. Chin. Chem. Lett. 2023, 34, 107650.
Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.
Ming, J.; Zhu, T. B.; Li, J. C.; Ye, Z. C.; Shi, C. R.; Guo, Z. D.; Wang, J. J.; Chen, X. L.; Zheng, N. F. A novel cascade nanoreactor integrating two-dimensional Pd-Ru nanozyme, uricase and red blood cell membrane for highly efficient hyperuricemia treatment. Small 2021, 17, 2103645.
Zhou, X. Y.; Fan, C.; Tian, Q. W.; Han, C. H.; Yin, Z. Q.; Dong, Z. Y.; Bi, S. Trimetallic Auptco nanopolyhedrons with peroxidase- and catalase-like catalytic activity for glow-type chemiluminescence bioanalysis. Anal. Chem. 2022, 94, 847–855.
Komkova, M. A.; Karyakina, E. E.; Karyakin, A. A. Catalytically synthesized Prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 2018, 140, 11302–11307.
Yu, B.; Wang, W.; Sun, W. B.; Jiang, C. H.; Lu, L. H. Defect engineering enables synergistic action of enzyme-mimicking active centers for high-efficiency tumor therapy. J. Am. Chem. Soc. 2021, 143, 8855–8865.
Taylor, C. N.; Urban-Klaehn, J.; Le, T. T.; Zaleski, R.; Rimer, J. D.; Gering, K. L. Catalyst deactivation probed by positron annihilation spectroscopy. ACS Catal. 2021, 11, 14967–14976.
Mitchell, S.; Gerchow, L.; Warringham, R.; Crivelli, P.; Pérez-Ramírez, J. Shedding new light on nanostructured catalysts with positron annihilation spectroscopy. Small Methods 2018, 2, 1800268.
Luo, Z. Y.; Ouyang, Y. X.; Zhang, H.; Xiao, M. L.; Ge, J. J.; Jiang, Z.; Wang, J. L.; Tang, D. M.; Cao, X. Z.; Liu, C. P. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120.
Zhang, H. C.; Cui, P. X.; Xie, D. H.; Wang, Y. J.; Wang, P.; Sheng, G. P. Axial N ligand-modulated ultrahigh activity and selectivity hyperoxide activation over single-atoms nanozymes. Adv. Sci. (Weinh. ) 2023, 10, 2205681.
Luo, X.; Wei, X. Q.; Wang, H. J.; Gu, W. L.; Kaneko, T.; Yoshida, Y.; Zhao, X.; Zhu, C. Z. Secondary-atom-doping enables robust Fe-N-C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 2020, 12, 163.
Tang, Y. J.; Chen, Y. J.; Wu, Y.; Xu, W. Q.; Luo, Z.; Ye, H. R.; Gu, W. L.; Song, W. Y.; Guo, S. J.; Zhu, C. Z. High-indexed intermetallic Pt3Sn nanozymes with high activity and specificity for sensitive immunoassay. Nano Lett. 2023, 23, 267–275.
Li, R. M.; Guo, W. W.; Zhu, Z. J.; Chen, Y. N.; Jiao, L.; Zhu, C. Z.; Zhai, Y. L.; Lu, X. Q. Single-site Sn-O-Cu pairs with interfacial electron transfer effect for enhanced electrochemical catalysis and sensing. Small 2023, 19, 2300149.
Jiao, L.; Kang, Y. K.; Chen, Y. F.; Wu, N. N.; Wu, Y.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Gu, W. L.; Zheng, L. R. et al. Unsymmetrically coordinated single Fe-N3S1 sites mimic the function of peroxidase. Nano Today 2021, 40, 101261.
Qin, Y.; Wen, J.; Wang, X. S.; Jiao, L.; Wei, X. Q.; Wang, H. J.; Li, J. L.; Liu, M. W.; Zheng, L. R.; Hu, L. Y. et al. Iron single-atom catalysts boost photoelectrochemical detection by integrating interfacial oxygen reduction and enzyme-mimicking activity. ACS Nano 2022, 16, 2997–3007.
Zeng, R. J.; Wang, W. J.; Cai, G. N.; Huang, Z. L.; Tao, J. M.; Tang, D. P.; Zhu, C. Z. Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures. Nano Energy 2020, 74, 104931.
Xu, W. Q.; Jiao, L.; Wu, Y.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. Metal-organic frameworks enhance biomimetic cascade catalysis for biosensing. Adv. Mater. 2021, 33, 2005172.
Yu, Z. C.; Gong, H. X.; Gao, Y.; Li, L.; Xue, F. Q.; Zeng, Y. Y.; Li, M. J.; Liu, X. L.; Tang, D. P. Integrated photothermal-pyroelectric biosensor for rapid and point-of-care diagnosis of acute myocardial infarction: A convergence of theoretical research and commercialization. Small 2022, 18, 2202564.
Yu, Z. C.; Gong, H. X.; Xue, F. Q.; Zeng, Y. Y.; Liu, X. L.; Tang, D. P. Flexible and high-throughput photothermal biosensors for rapid screening of acute myocardial infarction using thermochromic paper-based image analysis. Anal. Chem. 2022, 94, 13233–13242.
Liu, M. W.; Wen, J.; Xiao, R. S.; Tan, R.; Qin, Y.; Li, J. L.; Bai, Y. X.; Xi, M. Z.; Yang, W. H.; Fang, Q. et al. Improving interface matching in MOF-on-MOF S-scheme heterojunction through π–π conjugation for boosting photoelectric response. Nano Lett. 2023, 23, 5358–5366.
Zhao, L. W.; Yang, J.; Gong, M.; Li, K.; Gu, J. L. Specific screening of prostate cancer individuals using an enzyme-assisted substrate sensing platform based on hierarchical MOFs with tunable mesopore size. J. Am. Chem. Soc. 2021, 143, 15145–15151.
Dong, Y. P.; Luo, X. J.; Liu, Y. Q.; Yan, C. L.; Li, H. X.; Lv, J. C.; Yang, L.; Cui, Y. A disposable printed amperometric biosensor for clinical evaluation of creatinine in renal function detection. Talanta 2022, 248, 123592.
Zhang, X. F.; Xiao, W. H.; Xie, S. H.; Fan, G. C.; Shi, X. L.; Meng, H.; Yang, H. P. Low-density Pt nanoarray-based hydrogen peroxide sensing platform and its application in trace sarcosine detection. Electrochim. Acta 2023, 443, 141952.
Wang, X. C.; Chen, M. Y.; Zhao, L. S. Development of a colorimetric sensing assay for ascorbic acid and sarcosine utilizing the dual-class enzyme activity of Fe3O4@SiO2@NiCo2S4. Chem. Eng. J 2023, 468, 143612.
Jiang, X. Y.; Zhang, L.; Liu, Y. L.; Yu, X. D.; Liang, Y. Y.; Qu, P.; Zhao, W. W.; Xu, J. J.; Chen, H. Y. Hierarchical CuInS2-based heterostructure: Application for photocathodic bioanalysis of sarcosine. Biosens. Bioelectron. 2018, 107, 230–236.
Wang, M. J.; Zhang, L. J.; Zhou, X. B.; Zhang, J. B.; Zhou, C. Y.; Su, X. G. Fluorescence sensing platform for sarcosine analysis based on nitrogen-doping copper nanosheets and gold nanoclusters. Anal. Chim. Acta 2022, 1223, 340188.