AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Geometric and defects engineering collaboration for enhanced cascade enzymatic nanoreactors

Zhichao Yu§Ruijin Zeng§Hexiang GongYuan GaoShuyun ChenYunsen WangDianping Tang( )
Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, China

§ Zhichao Yu and Ruijin Zeng contributed equally to this work.

Show Author Information

Graphical Abstract

An efficient natural enzyme-nanozyme co-catalytic nanoreactor was developed for non-invasive prostate cancer surveillance by structural optimization and defect state design with single-atom Fe as the catalytic center.

Abstract

Highly evolved multi-enzyme cascade catalytic reactions in organisms facilitate rapid transfer of substrates and efficient conversion of intermediates in the catalytic unit, thus rationalizing their efficient biocatalysis. In this study, pore-ordered mesoporous single-atom (Fe) nitrogen-doped carbon nanoreactors (Mp-Fe-CN) were designed, in which a reasonable pore size was designed as a natural enzyme trap coupled to a simulated enzyme center. A polarity-mediated strategy was developed to obtain atomically dispersed nanoporous substrates, with the finding that polarity-guided engineering of the nitrogen-ligand environment and vacancy cluster defects clearly affects nanoporous activity, accompanied by appreciable mesoporous pore size elevation. The active center and distal N atom coordination of Fe-N4 affect the catalytic process of the nanozyme exposed by density functional theory (DFT), determining the contribution of hybridized orbitals to electron transfer and the decisive step. A cascade nanoreactor-based domain-limited sarcosine oxidase developed for non-invasive monitoring of sarcosine levels in urine for evaluation of potential prostate carcinogenesis as a proof of concept. Based on the design of surface mesoporous channels of nanocatalytic units, a bridge was built for the interaction between nanozymes and natural enzymes to achieve cascade nanocatalysis of natural enzymatic products.

Electronic Supplementary Material

Download File(s)
12274_2023_6119_MOESM1_ESM.pdf (14.2 MB)

References

[1]

Vázquez-González, M.; Wang, C.; Willner, I. Biocatalytic cascades operating on macromolecular scaffolds and in confined environments. Nat. Catal. 2020, 3, 256–273.

[2]

Feng, Y. F.; Shi, R. X.; Yang, M. F.; Zheng, Y. L.; Zhang, Z. J.; Chen, Y. A dynamic defect generation strategy for efficient enzyme immobilization in robust metal-organic frameworks for catalytic hydrolysis and chiral resolution. Angew. Chem., Int. Ed. 2023, 62, e202302436.

[3]

Getzoff, E. D.; Cabelli, D. E.; Fisher, C. L.; Parge, H. E.; Viezzoli, M. S.; Banci, L.; Hallewell, R. A. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature 1992, 358, 347–351.

[4]

Wheeldon, I.; Minteer, S. D.; Banta, S.; Barton, S. C.; Atanassov, P.; Sigman, M. Substrate channelling as an approach to cascade reactions. Nat. Chem. 2016, 8, 299–309.

[5]

Zhao, Z.; Fu, J. L.; Dhakal, S.; Johnson-Buck, A.; Liu, M. H.; Zhang, T.; Woodbury, N. W.; Liu, Y.; Walter, N. G.; Yan, H. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat. Commun. 2016, 7, 10619.

[6]

Zhang, Y. F.; Xing, C. Y.; Mu, Z. J.; Niu, Z. R.; Feng, X.; Zhang, Y. Y.; Wang, B. Harnessing self-repairing and crystallization processes for effective enzyme encapsulation in covalent organic frameworks. J. Am. Chem. Soc. 2023, 145, 13469–13475.

[7]

Lan, K.; Liu, L.; Yu, J. Y.; Ma, Y. Z.; Zhang, J. Y.; Lv, Z. R.; Yin, S. X.; Wei, Q. L.; Zhao, D. Y. Stepwise monomicelle assembly for highly ordered mesoporous TiO2 membranes with precisely tailored mesophase and porosity. JACS Au 2023, 3, 1141–1150.

[8]

Jiao, L.; Wu, J. B.; Zhong, H.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Chen, Y. F.; Yan, H. Y.; Zhang, Q. H.; Gu, W. L. et al. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.

[9]

Wei, X. Q.; Song, S. J.; Cai, W. W.; Luo, X.; Jiao, L.; Fang, Q.; Wang, X. S.; Wu, N. N.; Luo, Z.; Wang, H. J. et al. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 2023, 9, 181–197.

[10]

Cao, X. Y.; Zhao, L. L.; Wulan, B.; Tan, D. X.; Chen, Q. W.; Ma, J. Z.; Zhang, J. T. Atomic bridging structure of nickel-nitrogen-carbon for highly efficient electrocatalytic reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202113918.

[11]

Kim, K.; Lee, J.; Park, O. K.; Kim, J.; Kim, J.; Lee, D.; Paidi, V. K.; Jung, E.; Lee, H. S.; Lee, B. et al. Geometric tuning of single-atom FeN4 sites via edge-generation enhances multi-enzymatic properties. Adv. Mater. 2023, 35, 2207666.

[12]

Wang, Y.; Cho, A.; Jia, G. R.; Cui, X. Q.; Shin, J.; Nam, I.; Noh, K. J.; Park, B. J.; Huang, R.; Han, J. W. Tuning local coordination environments of manganese single-atom nanozymes with multi-enzyme properties for selective colorimetric biosensing. Angew. Chem., Int. Ed. 2023, 62, e202300119.

[13]

Zhao, S. F.; Li, H. H.; Liu, R. Y.; Tao, N.; Deng, L.; Xu, Q. Q.; Hou, J. N.; Sheng, J. P.; Zheng, J.; Wang, L. Q. et al. Nitrogen-centered lactate oxidase nanozyme for tumor lactate modulation and microenvironment remodeling. J. Am. Chem. Soc. 2023, 145, 10322–10332.

[14]

Zhu, D. M.; Ling, R. Y.; Chen, H.; Lyu, M.; Qian, H. S.; Wu, K. L.; Li, G. X.; Wang, X. W. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res. 2022, 15, 7320–7328.

[15]

Zhong, X. Y.; Wang, X. W.; Cheng, L.; Tang, Y. A.; Zhan, G. T.; Gong, F.; Zhang, R.; Hu, J.; Liu, Z.; Yang, X. L. GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 2020, 30, 1907954.

[16]

Wu, K. L.; Zhu, D. D.; Dai, X. L.; Wang, W. N.; Zhong, X. Y.; Fang, Z. B.; Peng, C.; Wei, X. W.; Qian, H. S.; Chen, X. L. et al. Bimetallic oxide Cu1.5Mn1.5O4 cage-like frame nanospheres with triple enzyme-like activities for bacterial-infected wound therapy. Nano Today 2022, 43, 101380.

[17]

Xu, B. L.; Li, S. S.; Zheng, L. R.; Liu, Y. H.; Han, A. L.; Zhang, J.; Huang, Z. J.; Xie, H. J.; Fan, K. L.; Gao, L. Z. et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 2022, 34, 2107088.

[18]

Wang, X. W.; Shi, Q. Q.; Zha, Z.; Zhu, D. D.; Zheng, L. R.; Shi, L. X.; Wei, X. W.; Lian, L.; Wu, K. L.; Cheng, L. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 2021, 6, 4389–4401.

[19]

Wu, Y.; Xu, W. Q.; Jiao, L.; Tang, Y. J.; Chen, Y. F.; Gu, W. L.; Zhu, C. Z. Defect engineering in nanozymes. Mater. Today 2022, 52, 327–347.

[20]

Wu, Y.; Wen, J.; Xu, W. Q.; Huang, J. J.; Jiao, L.; Tang, Y. J.; Chen, Y. F.; Yan, H. Y.; Cao, S. Y.; Zheng, L. R. et al. Defect-engineered nanozyme-linked receptors. Small 2021, 17, 2101907.

[21]

Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Tada, T.; Hosono, H. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 2020, 583, 391–395.

[22]

Hu, J. T.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q. H.; Wen, W.; Yu, S.; Pan, Y. et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250.

[23]
Kim, M. S.; Cho, S.; Joo, S. H.; Lee, J.; Kwak, S. K.; Kim, M. I.; Lee, J. N- and B-codoped graphene: A strong candidate to replace natural peroxidase in sensitive and selective bioassays. ACS Nano 2019, 13, 4312–4321.
[24]

Yu, Z. C.; Tang, J.; Gong, H. X.; Gao, Y.; Zeng, Y. Y.; Tang, D. P.; Liu, X. L. Enzyme-encapsulated protein trap engineered metal-organic framework-derived biomineral probes for non-invasive prostate cancer surveillance. Adv. Funct. Mater. 2023, 33, 2301457.

[25]
Shamsabadi, A.; Haghighi, T.; Carvalho, S.; Frenette, L. C.; Stevens, M. M. The nanozyme revolution: Enhancing the performance of medical biosensing platforms. Adv. Mater., in press, https://doi.org/10.1002/adma.202300184.
[26]

Ghorbanpour, S. M.; Wen, S. H.; Kaitu'u-Lino, T. J.; Hannan, N. J.; Jin, D. Y.; McClements, L. Quantitative point of care tests for timely diagnosis of early-onset preeclampsia with high sensitivity and specificity. Angew. Chem., Int. Ed. 2023, 62, e202301193.

[27]

Hassanzadeh, J.; Al Lawati, H. A. J.; Bagheri, N. On paper synthesis of multifunctional CeO2 nanoparticles@Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose. Biosens. Bioelectron. 2022, 207, 114184.

[28]

Wan, X. K.; Wu, H. B.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 2020, 32, 1901349.

[29]

Zhang, H. B.; Liu, Y. Y.; Chen, T.; Zhang, J. T.; Zhang, J.; Lou, X. W. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Angew. Chem., Int. Ed. 2019, 31, 1904548.

[30]

Cao, X. W.; Zhu, C. X.; Hong, Q.; Chen, X. H.; Wang, K. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Insight into iron leaching from an ascorbate-oxidase-like Fe-N-C nanozyme and oxygen reduction selectivity. Angew. Chem., Int. Ed. 2023, 62, e202302463.

[31]

Wan, K. W.; Jiang, B.; Tan, T.; Wang, H.; Liang, M. M. Surface-mediated production of complexed ·OH radicals and Fe=O species as a mechanism for iron oxide peroxidase-like nanozymes. Angew. Chem., Int. Ed. 2022, 18, 2204372.

[32]

Xu, Y.; Xue, J.; Zhou, Q.; Zheng, Y. J.; Chen, X. H.; Liu, S. Q.; Shen, Y. F.; Zhang, Y. J. The Fe-N-C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug–drug interactions. Angew. Chem., Int. Ed. 2020, 59, 14498–14503.

[33]

Qileng, A.; Chen, S. Z.; Liang, H. Z.; Chen, M. T.; Lei, H. T.; Liu, W. P.; Liu, Y. J. Boosting ultralong chemiluminescence for the self-powered time-resolved immunosensor. Biosens. Bioelectron. 2023, 234, 115338.

[34]

Jiao, L.; Xu, W. Q.; Zhang, Y.; Wu, Y.; Gu, W. L.; Ge, X. X.; Chen, B. B.; Zhu, C. Z.; Guo, S. J. Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today 2020, 35, 100971.

[35]

Jiao, L.; Tao, N.; Kang, Y. K.; Song, W. Y.; Chen, Y. F.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Gu, W. L.; Zheng, L. R. et al. Biomimetic Fe-Cu dual-atomic-site catalysts enable efficient H2O2 activation for tumor lymphatic metastasis inhibition. Nano Today 2023, 50, 101859.

[36]

Qin, Y.; Tan, R.; Wen, J.; Huang, Q. K.; Wang, H. J.; Liu, M. W.; Li, J. L.; Wang, C. L.; Shen, Y.; Hu, L. Y. et al. Engineering the microenvironment of electron transport layers with nickle single-atom sites for boosting photoelectrochemical performance. Chem. Sci. 2023, 14, 7346–7354.

[37]

Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

[38]

Wang, Z. W.; Wang, W. L.; Wang, J.; Wang, D. S.; Liu, M. L.; Wu, Q. Y.; Hu, H. Y. Single-atom catalysts with ultrahigh catalase-like activity through electron filling and orbital energy regulation. Adv. Funct. Mater. 2023, 33, 2209560.

[39]

Wang, S.; Hu, Z. F.; Wei, Q. L.; Zhang, H. M.; Tang, W. N.; Sun, Y. Q.; Duan, H. Q.; Dai, Z. C.; Liu, Q. Y.; Zheng, X. W. Diatomic active sites nanozymes: Enhanced peroxidase-like activity for dopamine and intracellular H2O2 detection. Nano Res. 2022, 15, 4266–4273.

[40]

Li, K.; Yang, J.; Gu, J. L. Spatially organized functional bioreactors in nanoscale mesoporous MOFs for cascade scavenging of intracellular ROS. Chem. Mater. 2021, 33, 2198–2205.

[41]

Yang, J.; Li, K.; Gu, J. L. Hierarchically macro-microporous ce-based MOFs for the cleavage of DNA. ACS Mater. Lett. 2022, 4, 385–391.

[42]

Chen, Y.; He, Y.; Xu, H. K.; Du, C.; Wu, X. J.; Yang, G. W. Superior peroxidase mimetic activity induced by topological surface states of Weyl semimetal WTe2. Nano Today 2022, 43, 101421.

[43]

Wen, S. S.; Zhang, Z. W.; Zhang, Y. P.; Liu, H.; Ma, X. W.; Li, L. J.; Song, W.; Zhao, B. Ultrasensitive stimulation effect of fluoride ions on a novel nanozyme-SERS system. ACS Sustainable Chem. Eng. 2020, 8, 11906–11913.

[44]

Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

[45]

Wang, X. W.; Zhong, X. Y.; Bai, L. X.; Xu, J.; Gong, F.; Dong, Z. L.; Yang, Z. J.; Zeng, Z. J.; Liu, Z.; Cheng, L. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6527–6537.

[46]

Hao, J. Y.; Zhang, C.; Feng, C. X.; Wang, Q.; Liu, Z. Y.; Li, Y.; Mu, J. S.; Yang, E. C.; Wang, Y. An ultra-highly active nanozyme of Fe, N co-doped ultrathin hollow carbon framework for antibacterial application. Chin. Chem. Lett. 2023, 34, 107650.

[47]

Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.

[48]

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[49]

Ming, J.; Zhu, T. B.; Li, J. C.; Ye, Z. C.; Shi, C. R.; Guo, Z. D.; Wang, J. J.; Chen, X. L.; Zheng, N. F. A novel cascade nanoreactor integrating two-dimensional Pd-Ru nanozyme, uricase and red blood cell membrane for highly efficient hyperuricemia treatment. Small 2021, 17, 2103645.

[50]

Zhou, X. Y.; Fan, C.; Tian, Q. W.; Han, C. H.; Yin, Z. Q.; Dong, Z. Y.; Bi, S. Trimetallic Auptco nanopolyhedrons with peroxidase- and catalase-like catalytic activity for glow-type chemiluminescence bioanalysis. Anal. Chem. 2022, 94, 847–855.

[51]

Komkova, M. A.; Karyakina, E. E.; Karyakin, A. A. Catalytically synthesized Prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 2018, 140, 11302–11307.

[52]

Yu, B.; Wang, W.; Sun, W. B.; Jiang, C. H.; Lu, L. H. Defect engineering enables synergistic action of enzyme-mimicking active centers for high-efficiency tumor therapy. J. Am. Chem. Soc. 2021, 143, 8855–8865.

[53]

Taylor, C. N.; Urban-Klaehn, J.; Le, T. T.; Zaleski, R.; Rimer, J. D.; Gering, K. L. Catalyst deactivation probed by positron annihilation spectroscopy. ACS Catal. 2021, 11, 14967–14976.

[54]

Mitchell, S.; Gerchow, L.; Warringham, R.; Crivelli, P.; Pérez-Ramírez, J. Shedding new light on nanostructured catalysts with positron annihilation spectroscopy. Small Methods 2018, 2, 1800268.

[55]

Luo, Z. Y.; Ouyang, Y. X.; Zhang, H.; Xiao, M. L.; Ge, J. J.; Jiang, Z.; Wang, J. L.; Tang, D. M.; Cao, X. Z.; Liu, C. P. et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 2018, 9, 2120.

[56]

Zhang, H. C.; Cui, P. X.; Xie, D. H.; Wang, Y. J.; Wang, P.; Sheng, G. P. Axial N ligand-modulated ultrahigh activity and selectivity hyperoxide activation over single-atoms nanozymes. Adv. Sci. (Weinh. ) 2023, 10, 2205681.

[57]

Luo, X.; Wei, X. Q.; Wang, H. J.; Gu, W. L.; Kaneko, T.; Yoshida, Y.; Zhao, X.; Zhu, C. Z. Secondary-atom-doping enables robust Fe-N-C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 2020, 12, 163.

[58]

Tang, Y. J.; Chen, Y. J.; Wu, Y.; Xu, W. Q.; Luo, Z.; Ye, H. R.; Gu, W. L.; Song, W. Y.; Guo, S. J.; Zhu, C. Z. High-indexed intermetallic Pt3Sn nanozymes with high activity and specificity for sensitive immunoassay. Nano Lett. 2023, 23, 267–275.

[59]

Li, R. M.; Guo, W. W.; Zhu, Z. J.; Chen, Y. N.; Jiao, L.; Zhu, C. Z.; Zhai, Y. L.; Lu, X. Q. Single-site Sn-O-Cu pairs with interfacial electron transfer effect for enhanced electrochemical catalysis and sensing. Small 2023, 19, 2300149.

[60]

Jiao, L.; Kang, Y. K.; Chen, Y. F.; Wu, N. N.; Wu, Y.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Gu, W. L.; Zheng, L. R. et al. Unsymmetrically coordinated single Fe-N3S1 sites mimic the function of peroxidase. Nano Today 2021, 40, 101261.

[61]

Qin, Y.; Wen, J.; Wang, X. S.; Jiao, L.; Wei, X. Q.; Wang, H. J.; Li, J. L.; Liu, M. W.; Zheng, L. R.; Hu, L. Y. et al. Iron single-atom catalysts boost photoelectrochemical detection by integrating interfacial oxygen reduction and enzyme-mimicking activity. ACS Nano 2022, 16, 2997–3007.

[62]

Zeng, R. J.; Wang, W. J.; Cai, G. N.; Huang, Z. L.; Tao, J. M.; Tang, D. P.; Zhu, C. Z. Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures. Nano Energy 2020, 74, 104931.

[63]

Xu, W. Q.; Jiao, L.; Wu, Y.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. Metal-organic frameworks enhance biomimetic cascade catalysis for biosensing. Adv. Mater. 2021, 33, 2005172.

[64]

Yu, Z. C.; Gong, H. X.; Gao, Y.; Li, L.; Xue, F. Q.; Zeng, Y. Y.; Li, M. J.; Liu, X. L.; Tang, D. P. Integrated photothermal-pyroelectric biosensor for rapid and point-of-care diagnosis of acute myocardial infarction: A convergence of theoretical research and commercialization. Small 2022, 18, 2202564.

[65]

Yu, Z. C.; Gong, H. X.; Xue, F. Q.; Zeng, Y. Y.; Liu, X. L.; Tang, D. P. Flexible and high-throughput photothermal biosensors for rapid screening of acute myocardial infarction using thermochromic paper-based image analysis. Anal. Chem. 2022, 94, 13233–13242.

[66]

Liu, M. W.; Wen, J.; Xiao, R. S.; Tan, R.; Qin, Y.; Li, J. L.; Bai, Y. X.; Xi, M. Z.; Yang, W. H.; Fang, Q. et al. Improving interface matching in MOF-on-MOF S-scheme heterojunction through π–π conjugation for boosting photoelectric response. Nano Lett. 2023, 23, 5358–5366.

[67]

Zhao, L. W.; Yang, J.; Gong, M.; Li, K.; Gu, J. L. Specific screening of prostate cancer individuals using an enzyme-assisted substrate sensing platform based on hierarchical MOFs with tunable mesopore size. J. Am. Chem. Soc. 2021, 143, 15145–15151.

[68]

Dong, Y. P.; Luo, X. J.; Liu, Y. Q.; Yan, C. L.; Li, H. X.; Lv, J. C.; Yang, L.; Cui, Y. A disposable printed amperometric biosensor for clinical evaluation of creatinine in renal function detection. Talanta 2022, 248, 123592.

[69]

Zhang, X. F.; Xiao, W. H.; Xie, S. H.; Fan, G. C.; Shi, X. L.; Meng, H.; Yang, H. P. Low-density Pt nanoarray-based hydrogen peroxide sensing platform and its application in trace sarcosine detection. Electrochim. Acta 2023, 443, 141952.

[70]

Wang, X. C.; Chen, M. Y.; Zhao, L. S. Development of a colorimetric sensing assay for ascorbic acid and sarcosine utilizing the dual-class enzyme activity of Fe3O4@SiO2@NiCo2S4. Chem. Eng. J 2023, 468, 143612.

[71]

Jiang, X. Y.; Zhang, L.; Liu, Y. L.; Yu, X. D.; Liang, Y. Y.; Qu, P.; Zhao, W. W.; Xu, J. J.; Chen, H. Y. Hierarchical CuInS2-based heterostructure: Application for photocathodic bioanalysis of sarcosine. Biosens. Bioelectron. 2018, 107, 230–236.

[72]

Wang, M. J.; Zhang, L. J.; Zhou, X. B.; Zhang, J. B.; Zhou, C. Y.; Su, X. G. Fluorescence sensing platform for sarcosine analysis based on nitrogen-doping copper nanosheets and gold nanoclusters. Anal. Chim. Acta 2022, 1223, 340188.

Nano Research
Pages 2451-2461
Cite this article:
Yu Z, Zeng R, Gong H, et al. Geometric and defects engineering collaboration for enhanced cascade enzymatic nanoreactors. Nano Research, 2024, 17(4): 2451-2461. https://doi.org/10.1007/s12274-023-6119-7
Topics:

665

Views

7

Crossref

10

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 14 July 2023
Revised: 08 August 2023
Accepted: 21 August 2023
Published: 30 September 2023
© Tsinghua University Press 2023
Return