AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress on electro-sorption technology for lithium recovery from aqueous sources

Qichen Lu( )Peng LiuTianyi ZhouRuling HuangKexin ZhangLin HuRong LiuZhibo RenJinyi WangXiaolong Wang( )
Huaneng Clean Energy Research Institute, Beijing 102209, China
Show Author Information

Graphical Abstract

Processes of electro-sorption technology for lithium recovery from aqueous sources are reviewed, as well as some prospects in this field are proposed.

Abstract

Lithium is known as the “white petroleum” of the electrification era, and the global demand for lithium grows rapidly with the quick development of new energy industry. The aqueous solutions, such as salt lake brine, underground brine, and seawater, have large lithium reserves, thus this kind of lithium resource has become a research hotspot recently. Compared with other lithium extraction technologies, electro-sorption method shows good prospects for practical applications with advantages in the aspects of efficiency, recovery ratio, cost, and environment. Herein, this review covers recent progress on electro-sorption technology for lithium recovery from aqueous solutions, including the concept illustration, research progress of the applied working electrodes and counter electrodes, and the evaluation indicators of electro-sorption system. Meanwhile, some prospects for the development of this technology are also proposed. We hope this review is beneficial for the construction of high-efficient electrochemical lithium recovery system to achieve an adequate lithium supply in the future.

References

[1]
Evans, K. Lithium. In Critical Metals Handbook. Gunn, G., Ed.; John Wiley & Sons: Hoboken, 2014; pp 230–260.
[2]

Martin, G.; Rentsch, L.; Höck, M.; Bertau, M. Lithium market research—Global supply, future demand and price development. Energy Storage Mater. 2017, 6, 171–179.

[3]
U. S. Geological Survey. Mineral commodity summaries 2023 [Online]. U.S. Geological Survey: Reston, VA, 2023; pp 108–109. https://doi.org/10.3133/mcs2023 (accessed May 18, 2023).
[4]

Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403.

[5]

Song, J. F.; Nghiem, L. D.; Li, X. M.; He, T. Lithium extraction from Chinese salt-lake brines: Opportunities, challenges, and future outlook. Environ. Sci.: Water Res. Technol. 2017, 3, 593–597.

[6]

Yang, S. X.; Zhang, F.; Ding, H. P.; He, P.; Zhou, H. S. Lithium metal extraction from seawater. Joule 2018, 2, 1648–1651.

[7]

Li, Z.; Li, C. Y.; Liu, X. W.; Cao, L.; Li, P. P.; Wei, R. C.; Li, X.; Guo, D.; Huang, K. W.; Lai, Z. P. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 2021, 14, 3152–3159.

[8]

Dugamin, E. J. M.; Richard, A.; Cathelineau, M.; Boiron, M. C.; Despinois, F.; Brisset, A. Groundwater in sedimentary basins as potential lithium resource: A global prospective study. Sci. Rep. 2021, 11, 21091.

[9]

Yu, X. P.; Fan, X. B.; Guo, Y. F.; Deng, T. L. Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate. Sep. Purif. Technol. 2019, 211, 790–798.

[10]

Alsabbagh, A.; Aljarrah, S.; Almahasneh, M. Lithium enrichment optimization from Dead Sea end brine by chemical precipitation technique. Miner. Eng. 2021, 170, 107038.

[11]

Gu, D. L.; Sun, W. J.; Han, G. F.; Cui, Q.; Wang, H. Y. Lithium ion sieve synthesized via an improved solid state method and adsorption performance for West Taijinar Salt Lake brine. Chem. Eng. J. 2018, 350, 474–483.

[12]

Cai, C. Q.; Yang, F.; Zhao, Z. G.; Liao, Q. X.; Bai, R. X.; Guo, W. H.; Chen, P.; Zhang, Y.; Zhang, H. Promising transport and high-selective separation of Li(I) from Na(I) and K(I) by a functional polymer inclusion membrane (PIM) system. J. Membr. Sci. 2019, 579, 1–10.

[13]

Shi, C. L.; Jing, Y.; Jia, Y. Z. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid. J. Mol. Liq. 2016, 215, 640–646.

[14]

Hoshino, T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 2015, 359, 59–63.

[15]

Chen, Q. B.; Ji, Z. Y.; Liu, J.; Zhao, Y. Y.; Wang, S. Z.; Yuan, J. S. Development of recovering lithium from brines by selective-electrodialysis: Effect of coexisting cations on the migration of lithium. J. Membr. Sci. 2018, 548, 408–420.

[16]

Wang, Y. Y.; Zhang, G. Y.; Dong, G. F.; Zheng, H. Research progress of working electrode in electrochemical extraction of lithium from brine. Batteries 2022, 8, 225.

[17]

Kanoh, H.;Ooi, K.;Miyai, Y.; Katoh, S. Selective electroinsertion of lithium ions into a Pt/λ-MnO2 electrode in the aqueous phase. Langmuir 1991, 7, 1841–1842.

[18]

Zhong, J.; Lin, S.; Yu, J. G. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines. Desalination 2021, 505, 114983.

[19]

Qian, F. R.; Guo, M.; Qian, Z. Q.; Li, Q.; Wu, Z. J.; Liu, Z. Highly lithium adsorption capacities of H1.6Mn1.6O4 ion-sieve by ordered array structure. ChemistrySelect 2019, 4, 10157–10163.

[20]

Qian, F. R.; Guo, M.; Qian, Z. Q.; Zhao, B.; Li, J.; Wu, Z. J.; Liu, Z. Enabling highly structure stability and adsorption performances of Li1.6Mn1.6O4 by Al-gradient surface doping. Sep. Purif. Technol. 2021, 264, 118433.

[21]

Dai, X. Y.; Zhan, H. L.; Qian, Z. Q.; Li, J.; Liu, Z.; Wu, Z. J. Al-doped H2TiO3 ion sieve with enhanced Li+ adsorption performance. RSC Adv. 2021, 11, 34988–34995.

[22]

Zhao, B.; Qian, Z. Q.; Guo, M.; Wu, Z. J.; Liu, Z. The performance and mechanism of recovering lithium on H4Ti5O12 adsorbents influenced by (110) and (111) facets exposed. Chem. Eng. J. 2021, 414, 128729.

[23]

Wei, S. D.; Wei, Y. F.; Chen, T.; Liu, C. B.; Tang, Y. H. Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water. Chem. Eng. J. 2020, 379, 122407.

[24]

Zhao, X. Y.; Yang, S.; Hou, Y. D.; Gao, H. Q.; Wang, Y. F.; Gribble, D. A.; Pol, V. G. Recent progress on key materials and technical approaches for electrochemical lithium extraction processes. Desalination 2023, 546, 116189.

[25]

Llusco, A.; Rojas, L.; Ushak, S.; Grageda, M. Potential use of magnesium industrial waste for synthesis of Li and Mg co-doped LiMn2O4 nanoparticles as cathode material for Li-ion batteries: Effect of sintering temperature. Nano Res. 2022, 15, 4500–4516.

[26]

Chen, J. Y.; Qiao, X.; Fu, W.; Han, X. R.; Wu, Q.; Wang, Y. Z.; Zhang, Y.; Shi, L.; Zhao, J.; Ma, Y. W. Lithiophilic hyperbranched Cu nanostructure for stable Li metal anodes. SmartMat 2023, 4, e1174.

[27]

Kanoh, H.; Ooi, K.; Miyai, Y.; Katoh, S. Electrochemical recovery of lithium ions in the aqueous phase. Sep. Sci. Technol. 1993, 28, 643–651.

[28]

He, L. H.; Xu, W. H.; Song, Y. F.; Luo, Y. Z.; Liu, X. H.; Zhao, Z. W. New insights into the application of lithium-ion battery materials: Selective extraction of lithium from brines via a rocking-chair lithium-ion battery system. Glob. Chall. 2018, 2, 1700079.

[29]

Xu, W. H.; He, L. H.; Zhao, Z. W. Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials. Desalination 2021, 503, 114935.

[30]

Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2010, 2, 760–765.

[31]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[32]

Hu, B. L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 2013, 4, 1687.

[33]

Gu, X. X.; Qiao, S.; Ren, X. L.; Liu, X. Y.; He, Y. Z.; Liu, X. T.; Liu, T. F. Multi-core–shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries. Rare Met. 2021, 40, 828–836.

[34]

Fan, M. C.; Zhao, Y.; Kang, Y. Q.; Wozny, J.; Liang, Z.; Wang, J. X.; Zhou, G. M.; Li, B. H.; Tavajohi, N.; Kang, F. Y. Room-temperature extraction of individual elements from charged spent LiFePO4 batteries. Rare Met. 2022, 41, 1595–1604.

[35]

Pasta, M.; Battistel, A.; La Mantia, F. Batteries for lithium recovery from brines. Energy Environ. Sci. 2012, 5, 9487–9491.

[36]

Kim, J. S.; Lee, Y. H.; Choi, S.; Shin, J.; Dinh, H. C.; Choi, J. W. An electrochemical cell for selective lithium capture from seawater. Environ. Sci. Technol. 2015, 49, 9415–9422.

[37]

Liu, C.; Li, Y. B.; Lin, D. C.; Hsu, P. C.; Liu, B. F.; Yan, G. B.; Wu, T.; Cui, Y.; Chu, S. Lithium extraction from seawater through pulsed electrochemical intercalation. Joule 2020, 4, 1459–1469.

[38]

Xiong, Y. C.; Zhou, J. W.; Lu, P. Y.; Yin, J. W.; Wang, Y. H.; Fan, Z. X. Electrochemical lithium extraction from aqueous sources. Matter 2022, 5, 1760–1791.

[39]

Chen, B.; Ben, L. B.; Yu, H. L.; Chen, Y. Y.; Huang, X. J. Understanding surface structural stabilization of the high-temperature and high-voltage cycling performance of Al3+-modified LiMn2O4 cathode material. ACS Appl. Mater. Interfaces 2018, 10, 550–559.

[40]

Zhao, H. Y.; Li, F.; Liu, X. Q.; Xiong, W. Q.; Chen, B.; Shao, H. L.; Que, D. Y.; Zhang, Z.; Wu, Y. A simple, low-cost and eco-friendly approach to synthesize single-crystalline LiMn2O4 nanorods with high electrochemical performance for lithium-ion batteries. Electrochim. Acta 2015, 166, 124–133.

[41]

Schilcher, C.; Meyer, C.; Kwade, A. Structural and electrochemical properties of calendered lithium manganese oxide cathodes. Energy Technol. 2016, 4, 1604–1610.

[42]

Tang, D. C.; Sun, Y.; Yang, Z. Z.; Ben, L. B.; Gu, L.; Huang, X. J. Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chem. Mater. 2014, 26, 3535–3543.

[43]

Ragavendran, K.; Xia, H.; Mandal, P.; Arof, A. K. Jahn–Teller effect in LiMn2O4: Influence on charge ordering, magnetoresistance and battery performance. Phys. Chem. Chem. Phys. 2017, 19, 2073–2077.

[44]

Zhao, X. Y.; Jiao, Y. X.; Xue, P. J.; Feng, M. H.; Wang, Y. F.; Sha, Z. L. Efficient lithium extraction from brine using a three-dimensional nanostructured hybrid inorganic-gel framework electrode. ACS Sustain. Chem. Eng. 2020, 8, 4827–4837.

[45]

Liang, G. M.; Didier, C.; Guo, Z. P.; Pang, W. K.; Peterson, V. K. Understanding rechargeable battery function using in operando neutron powder diffraction. Adv. Mater. 2020, 32, 1904528.

[46]

Liang, G. M.; Peterson, V. K.; See, K. W.; Guo, Z. P.; Pang, W. K. Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: Current achievements and future prospects. J. Mater. Chem. A 2020, 8, 15373–15398.

[47]

Fang, Z.; Zhang, X. L.; Hou, X. Y.; Huang, W. L.; Li, L. B. Submicron single-crystalline LiNi0.5Mn1.5O4 cathode with modulated Mn3+ content enabling high capacity and fast lithium-ion kinetics. Rare Met. 2022, 41, 2268–2279.

[48]

Luo, S.; Li, J. E.; Lu, J. L.; Tao, F.; Wan, J.; Zhang, B.; Zhou, X. Y.; Hu, C. G. High-performance aqueous asymmetric supercapacitor based on hierarchical wheatear-like LiNi0.5Mn1.5O4 cathode and porous Fe2O3 anode. Mater. Today Phys. 2021, 17, 100337.

[49]

Lawagon, C. P.; Nisola, G. M.; Cuevas, R. A. I.; Torrejos, R. E. C.; Kim, H.; Lee, S. P.; Chung, W. J. Li1−xNi0.5Mn1.5O4/Ag for electrochemical lithium recovery from brine and its optimized performance via response surface methodology. Sep. Purif. Technol. 2019, 212, 416–426.

[50]

Koyama, Y.; Yabuuchi, N.; Tanaka, I.; Adachi, H.; Ohzuku, T. Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries: I. First-principles calculation on the crystal and electronic structures. J. Electrochem. Soc. 2004, 151, A1545–A1551.

[51]

Zhu, L. M.; Bao, C. G.; Xie, L. L.; Yang, X. L.; Cao, X. Y. Review of synthesis and structural optimization of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries applications. J. Alloys Compd. 2020, 831, 154864.

[52]

Wang, F. X.; Xiao, S. Y.; Chang, Z.; Yang, Y. Q.; Wu, Y. P. Nanoporous LiNi1/3Co1/3Mn1/3O2 as an ultra-fast charge cathode material for aqueous rechargeable lithium batteries. Chem. Commun. 2013, 49, 9209–9211.

[53]

Wang, J. H.; Wang, Y.; Guo, Y. Z.; Liu, C. W.; Dan, L. L. Electrochemical characterization of AlPO4 coated LiNi1/3Co1/3Mn1/3O2 cathode materials for high temperature lithium battery application. Rare Met. 2021, 40, 78–83.

[54]

Zhao, Y.; Wang, Y. Y.; Lai, Q. Y.; Chen, L. M.; Hao, Y. J.; Ji, X. Y. Pseudocapacitance properties of AC/LiNi1/3Co1/3Mn1/3O2 asymmetric supercapacitor in aqueous electrolyte. Synthetic Met. 2009, 159, 331–337.

[55]

Lawagon, C. P.; Nisola, G. M.; Cuevas, R. A. I.; Kim, H.; Lee, S. P.; Chung, W. J. Li1−xNi0.33Co1/3Mn1/3O2/Ag for electrochemical lithium recovery from brine. Chem. Eng. J. 2018, 348, 1000–1011.

[56]

Battistel, A.; Palagonia, M. S.; Brogioli, D.; La Mantia, F.; Trócoli, R. Electrochemical methods for lithium recovery: A comprehensive and critical review. Adv. Mater. 2020, 32, 1905440.

[57]
Zhao, T.; Xu, G. C.; Gong, B. B.; Jiang, J. H.; Zhang, L. Electronic modulation of sprout-shaped NiCoP nanoarrays by N and Ce doping for efficient overall water splitting. Nano Res., in press, https://doi.org/10.1007/s12274-023-5769-9.
[58]

Ren, J. H.; Liu, J.; Du, Y. M.; Li, S. S.; Wang, M. M.; Li, B.; Yang, B.; Wang, L.; Liu, Y. R. Trace ruthenium promoted dual-reconstruction of CoFeP@C/NF for activating overall water splitting performance beyond precious-metals. Nano Res. 2023, 16, 10810–10821.

[59]

Wang, C. S.; Zhang, Q.; Yan, B.; You, B.; Zheng, J. J.; Feng, L.; Zhang, C. M.; Jiang, S. H.; Chen, W.; He, S. J. Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 2023, 15, 52.

[60]

Ding, L.; Xie, Z. Q.; Yu, S. L.; Wang, W. T.; Terekhov, A. Y.; Canfield, B. K.; Capuano, C. B.; Keane, A.; Ayers, K.; Cullen, D. A. et al. Electrochemically grown ultrathin platinum nanosheet electrodes with ultralow loadings for energy-saving and industrial-level hydrogen evolution. Nano-Micro Lett. 2023, 15, 144.

[61]

Ho, M. Y.; Khiew, P. S.; Isa, D.; Tan, T. K.; Chiu, W. S.; Chia, C. H. Charge storage performance of lithiated iron phosphate/activated carbon composite as symmetrical electrode for electrochemical capacitor. Curr. Appl. Phys. 2014, 14, 1564–1575.

[62]

Kim, S.; Lee, J.; Kang, J. S.; Jo, K.; Kim, S.; Sung, Y. E.; Yoon, J. Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system. Chemosphere 2015, 125, 50–56.

[63]

Zhao, A. L.; Liu, J. C.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Highly selective and pollution-free electrochemical extraction of lithium by a polyaniline/LixMn2O4 cell. ChemSusChem 2019, 12, 1361–1367.

[64]

Trócoli, R.; Battistel, A.; La Mantia, F. Nickel hexacyanoferrate as suitable alternative to Ag for electrochemical lithium recovery. ChemSusChem 2015, 8, 2514–2519.

[65]

Kim, S.; Lee, J.; Kim, S.; Kim, S.; Yoon, J. Electrochemical lithium recovery with a LiMn2O4-zinc battery system using zinc as a negative electrode. Energy Technol. 2018, 6, 340–344.

Nano Research
Pages 2563-2573
Cite this article:
Lu Q, Liu P, Zhou T, et al. Recent progress on electro-sorption technology for lithium recovery from aqueous sources. Nano Research, 2024, 17(4): 2563-2573. https://doi.org/10.1007/s12274-023-6121-0
Topics:

623

Views

4

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 31 July 2023
Revised: 20 August 2023
Accepted: 21 August 2023
Published: 20 September 2023
© Tsinghua University Press 2023
Return