AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Fundamental strengthening mechanisms of ordered gradient nanotwinned metals

Zhao ChengLei Lu( )
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Show Author Information

Graphical Abstract

Gradient nanotwinned (GNT) structures were taken as one prototype of emerging metallic materials with ordered structures to uncover the underlying mechanisms responsible for their remarkable mechanical properties, distinct gradient deformations, and inherent strengthening kinematics.

Abstract

Ordered structures with functional units offer the potential for enhanced performance in metallic materials. Among these structures, gradient nanotwinned (GNT) microstructures demonstrate excellent controllability. This paper provides a comprehensive review of the current state-of-the-art studies on GNT structures, encompassing various aspects such as design strategies, mechanical properties characterization, spatially gradient strain evolution analysis, and the significant role of geometrically necessary dislocations (GNDs). The primary objective is to systematically unravel the fundamental strengthening mechanisms by gaining an in-depth understanding of the deformation behavior of nanotwinned units. Through this work, we aim to contribute to the broader field of materials science by consolidating knowledge and providing insights for the development of novel metallic materials with enhanced properties and tailored performance characteristics.

References

[1]

Meyers, M. A.; Mishra, A.; Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556.

[2]

Dao, M.; Lu, L.; Asaro, R.; De Hosson, J. T. M.; Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007, 55, 4041–4065.

[3]

Kumar, K. S.; Van Swygenhoven, H.; Suresh, S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003, 51, 5743–5774.

[4]

Chen, K. X.; Li, L. Ordered structures with functional units as a paradigm of material design. Adv. Mater. 2019, 31, 1901115.

[5]

Li, X. Y.; Lu, L.; Li, J. G.; Zhang, X.; Gao, H. J. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat. Rev. Mater. 2020, 5, 706–723.

[6]

Ma, E.; Zhu, T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 2017, 20, 323–331.

[7]

Wu, X. L.; Zhu, Y. T. Gradient and lamellar heterostructures for superior mechanical properties. MRS Bull. 2021, 46, 244–249.

[8]

Pan, Q. S.; Lu, L. Synthesis and deformation mechanics of gradient nanostructured materials. Natl. Sci. Open 2022, 1, 20220010.

[9]

Jiang, J. X.; Chen, Z. K.; Ma, H. C.; Xing, H. Z.; Li, X. Y. Strength-ductility synergy in heterogeneous-structured metals and alloys. Matter 2022, 5, 2430–2433.

[10]

Suresh, S. Graded materials for resistance to contact deformation and damage. Science 2001, 292, 2447–2451.

[11]

Fang, T. H.; Li, W. L.; Tao, N. R.; Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 2011, 331, 1587–1590.

[12]

Cheng, Z.; Zhou, H. F.; Lu, Q. H.; Gao, H. J.; Lu, L. Extra strengthening and work hardening in gradient nanotwinned metals. Science 2018, 362, eaau1925.

[13]

Lin, Y.; Pan, J.; Zhou, H. F.; Gao, H. J.; Li, Y. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater. 2018, 153, 279–289.

[14]

Misra, A.; Hirth, J. P.; Hoagland, R. G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 2005, 53, 4817–4824.

[15]

Göken, M.; Höppel, H. W. Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding. Adv. Mater. 2011, 23, 2663–2668.

[16]

Huang, C. X.; Wang, Y. F.; Ma, X. L.; Yin, S.; Höppel, H. W.; Göken, M.; Wu, X. L.; Gao, H. J.; Zhu, Y. T. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater. Today 2018, 21, 713–791.

[17]

Huang, M.; Xu, C.; Fan, G. H.; Maawad, E.; Gan, W. M.; Geng, L.; Lin, F. X.; Tang, G. Z.; Wu, H.; Du, Y. et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite. Acta Mater. 2018, 153, 235–249.

[18]

Sawangrat, C.; Kato, S.; Orlov, D.; Ameyama, K. Harmonic-structured copper: Performance and proof of fabrication concept based on severe plastic deformation of powders. J. Mater. Sci. 2014, 49, 6579–6585.

[19]

Vajpai, S. K.; Ota, M.; Zhang, Z.; Ameyama, K. Three-dimensionally gradient harmonic structure design: An integrated approach for high performance structural materials. Mater. Res. Lett. 2016, 4, 191–197.

[20]

Sun, H.; Saba, F.; Fan, G. L.; Tan, Z. Q.; Li, Z. Q. Micro/nano-reinforcements in bimodal-grained matrix: A heterostructure strategy for toughening particulate reinforced metal matrix composites. Scr. Mater. 2022, 217, 114774.

[21]

Zha, M.; Zhang, H. M.; Yu, Z. Y.; Zhang, X. H.; Meng, X. T.; Wang, H. Y.; Jiang, Q. C. Bimodal microstructure—A feasible strategy for high-strength and ductile metallic materials. J. Mater. Sci. Technol. 2018, 34, 257–264.

[22]

Cordero, Z. C.; Knight, B. E.; Schuh, C. A. Six decades of the Hall-Petch effect—A survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 2016, 61, 495–512.

[23]

Lu, L.; Chen, X.; Huang, X.; Lu, K. Revealing the maximum strength in nanotwinned copper. Science 2009, 323, 607–610.

[24]

You, Z. S.; Lu, L.; Lu, K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins. Acta Mater. 2011, 59, 6927–6937.

[25]

Liu, G.; Zhang, G. J.; Jiang, F.; Ding, X. D.; Sun, Y. J.; Sun, J.; Ma, E. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 2013, 12, 344–350.

[26]

Niu, M. C.; Zhou, G.; Wang, W.; Shahzad, M. B.; Shan, Y. Y.; Yang, K. Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel. Acta Mater. 2019, 179, 296–307.

[27]

Huang, X.; Winther, G. Dislocation structures. Part I. Grain orientation dependence. Philos. Mag. 2007, 87, 5189–5214.

[28]

Essmann, U.; Mughrabi, H. Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philos. Mag. A 1979, 40, 731–756.

[29]

Zeng, Z.; Li, X. Y.; Xu, D. S.; Lu, L.; Gao, H. J.; Zhu, T. Gradient plasticity in gradient nano-grained metals. Extreme Mech. Lett. 2016, 8, 213–219.

[30]

Zhang, Y.; Cheng, Z.; Lu, L.; Zhu, T. Strain gradient plasticity in gradient structured metals. J. Mech. Phys. Solids 2020, 140, 103946.

[31]

Beyerlein, I. J.; Mara, N. A.; Wang, J.; Carpenter, J. S.; Zheng, S. J.; Han, W. Z.; Zhang, R. F.; Kang, K.; Nizolek, T.; Pollock, T. M. Structure–property–functionality of bimetal interfaces. JOM 2012, 64, 1192–1207.

[32]

Ashby, M. F. The deformation of plastically non-homogeneous materials. Philos. Mag.: J. Theor. Exp. Appl. Phys. 1970, 21, 399–424.

[33]

Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W. Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 1994, 42, 475–7487.

[34]

Gao, H.; Huang, Y.; Nix, W. D.; Hutchinson, J. W. Mechanism-based strain gradient plasticity-I Theory. J. Mech. Phys. Solids 1999, 47, 1239–1263.

[35]

Cheng, Z.; Lu, L. The effect of gradient order on mechanical behaviors of gradient nanotwinned Cu. Scr. Mater. 2019, 164, 130–134.

[36]

Wan, T.; Cheng, Z.; Bu, L. F.; Lu, L. Work hardening discrepancy designing to strengthening gradient nanotwinned Cu. Scr. Mater. 2021, 201, 113975.

[37]

Cheng, Z.; Wan, T.; Bu, L. F.; Lu, L. Effect of volume fractions of gradient transition layer on mechanical behaviors of nanotwinned Cu. Acta Mater. 2023, 242, 118456.

[38]

Chen, W. F.; Wan, P. P.; Zhao, Q. K.; Zhou, H. F. Constitutive description of extra strengthening in gradient nanotwinned metals. Nanomaterials 2021, 11, 2375.

[39]

You, Z. H.; Li, X. Y.; Gui, L. J.; Lu, Q. H.; Zhu, T.; Gao, H. J.; Lu, L. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 2013, 61, 217–227.

[40]

Lu, Q. H.; You, Z. S.; Huang, X. X.; Hansen, N.; Lu, L. Dependence of dislocation structure on orientation and slip systems in highly oriented nanotwinned Cu. Acta Mater. 2017, 127, 85–97.

[41]

Wang, J. W.; Cao, G.; Zhang, Z.; Sansoz, F. Size-dependent dislocation-twin interactions. Nanoscale 2019, 11, 12672–12679.

[42]

Cheng, Z.; Bu, L. F.; Zhang, Y.; Wu, H. A.; Zhu, T.; Gao, H. J.; Lu, L. Unraveling the origin of extra strengthening in gradient nanotwinned metals. Proc. Natl. Acad. Sci. USA 2022, 119, e2116808119.

[43]

Cheng, Z.; Bu, L. F.; Zhang, Y.; Wu, H. A.; Zhu, T.; Lu, L. Characterization of gradient plastic deformation in gradient nanotwinned Cu. Acta Mater. 2023, 246, 118673.

[44]

Di Gioacchino, F.; da Fonseca, J. Q. Plastic strain mapping with sub-micron resolution using digital image correlation. Exp. Mech. 2013, 53, 743–754.

[45]

Wu, H.; Fan, G. H.; Huang, M.; Geng, L.; Cui, X. P.; Xie, H. L. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect. Int. J. Plast. 2017, 89, 96–109.

[46]

Malygin, G. A. Dislocation mechanism of dynamic polygonization of a crystal caused by its bending. Phys. Solid State 2002, 44, 1249–1253.

[47]

Cottrell, A. H. Commentary. A brief view of work hardening. Dislocat. Solids 2002, 11, vii–xvii.

[48]

Marcinkowsk, M. J. The mechanism of cell wall formation. Phys. Status Solidi (A) 1984, 83, 59–68.

[49]

Kubin, L. P.; Canova, G. The modelling of dislocation patterns. Scr. Metall. Mater. 1992, 27, 957–962.

[50]

Dickson, J. I.; Boutin, J.; Handfield, L. A comparison of two simple methods for measuring cyclic internal and effective stresses. Mater. Sci. Eng. A 1984, 64, L7–L11.

[51]

Feaugas, X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress. Acta Mater. 1999, 47, 3617–3632.

[52]

Zhu, Y. T.; Wu, X. L. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett. 2019, 7, 393–398.

[53]

Zhang, Y.; Ding, K. Q.; Gu, Y. J.; Chen, W.; Wang, Y. M.; El-Awady, J.; McDowell, D. L.; Zhu, T. Modeling of microscale internal stresses in additively manufactured stainless steel. Modell. Simul. Mater. Sci. Eng. 2022, 30, 074001.

[54]

Taylor, G. I. The formation of emulsions in definable fields of flow. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 1934, 146, 501–523.

[55]

Mughrabi, H. A two-parameter description of heterogeneous dislocation distributions in deformed metal crystals. Mater. Sci. Eng. A 1987, 85, 15–31.

[56]

Mughrabi, H. The α-factor in the Taylor flow-stress law in monotonic, cyclic and quasi-stationary deformations: Dependence on slip mode, dislocation arrangement and density. Curr. Opin. Solid State Mater. Sci. 2016, 20, 411–420.

[57]

Ungár, T.; Stoica, A. D.; Tichy, G.; Wang, X. L. Orientation-dependent evolution of the dislocation density in grain populations with different crystallographic orientations relative to the tensile axis in a polycrystalline aggregate of stainless steel. Acta Mater. 2014, 66, 251–261.

[58]

Bu, L. F.; Cheng, Z.; Zhang, Y.; Wu, H. A.; Zhu, T.; Lu, L. Trans-twin dislocations in nanotwinned metals. Scr. Mater. 2023, 229, 115348.

[59]

Pan, Q. S.; Zhou, H. F.; Lu, Q. H.; Gao, H. J.; Lu, L. History-independent cyclic response of nanotwinned metals. Nature 2017, 551, 214–217.

[60]

Wu, X. L.; Jiang, P.; Chen, L.; Yuan, F. P.; Zhu, Y. T. Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. USA 2014, 111, 7197–7201.

[61]

Lu, K.; Lu, L.; Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 2009, 324, 349–352.

[62]

Valiev, R. Z.; Alexandrov, I. V.; Zhu, Y. T.; Lowe, T. C. Paradox of strength and ductility in metals processed bysevere plastic deformation. J. Mater. Res. 2002, 17, 5–8.

[63]

Wu, X. L.; Yang, M. X.; Li, R. G.; Jiang, P.; Yuan, F. P.; Wang, Y. D.; Zhu, Y. T.; Wei, Y. G. Plastic accommodation during tensile deformation of gradient structure. Sci. China Mater. 2021, 64, 1534–1544.

[64]

Latypov, M. I.; Stinville, J. C.; Mayeur, J. R.; Hestroffer, J. M.; Pollock, T. M.; Beyerlein, I. J. Insight into microstructure-sensitive elastic strain concentrations from integrated computational modeling and digital image correlation. Scr. Mater. 2021, 192, 78–82.

[65]

Zhou, H.; Huang, C. X.; Sha, X. C.; Xiao, L. R.; Ma, X. L.; Höppel, H. W.; Göken, M.; Wu, X. L.; Ameyama, K.; Han, X. D. et al. In-situ observation of dislocation dynamics near heterostructured interfaces. Mater. Res. Lett. 2019, 7, 376–382.

[66]

Zhao, J. F.; Lu, X. C.; Yuan, F P.; Kan, Q. H.; Qu, S. X.; Kang, G. Z.; Zhang, X. Multiple mechanism based constitutive modeling of gradient nanograined material. Int. J. Plast. 2020, 125, 314–330.

[67]

Kim, Y.; Gu, G. H.; Kim, R. E.; Seo, M. H.; Kim, H. S. Deformation behavior of lightweight clad sheet: Experiment and modeling. Mater. Sci. Eng. A 2022, 852, 143666.

[68]

Chen, X.; Zhou, H. F.; Li, Y. M. Effective design space exploration of gradient nanostructured materials using active learning based surrogate models. Mater. Des. 2019, 183, 108085.

Nano Research
Pages 12430-12437
Cite this article:
Cheng Z, Lu L. Fundamental strengthening mechanisms of ordered gradient nanotwinned metals. Nano Research, 2023, 16(11): 12430-12437. https://doi.org/10.1007/s12274-023-6124-x
Topics:

798

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 05 July 2023
Revised: 22 August 2023
Accepted: 22 August 2023
Published: 19 September 2023
© Tsinghua University Press 2023
Return